• Title/Summary/Keyword: mixed finite element analysis

Search Result 205, Processing Time 0.024 seconds

p-Version Finite Element Model for Computation of the Stress Intensity Factors of Cracked Panels under Mixed Mode (혼합모우드를 받는 균열판의 응력확대계수 산정을 위한 p-Version 유한요소 모델)

  • 윤영필;이채규;우광성
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.133-142
    • /
    • 1996
  • In this paper, two different techniques for mixed-mode type engineering fracture mechanics are investigated to estimate the stress intensity factors by using p-version finite element model. These two techniques are displacement extrapolation with COD and CSD method and J-integral with decomposition method. By decomposing the displacement field obtained from p-version of finite element analysis into symmetric and antisymmetric displacement fields with respect to the crack line, Mode-I and Mode-II stress intensity factors can be determined using aforementioned techniques. The example problems for validating the proposed techniques are centrally and centrally oblique cracked panels under tension. The numerical results associated with the variation of oblique angle and the ratio of crack length and panel width (a /W ratio) are compared with those by theoretical values and empirical solutions in literatures. Very good agreements with the existing solutions are shown.

  • PDF

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

Analysis of mixed mode surface crack in finite-width plate subjected to uniform tension and bending by boundary element method (경계요소법에 의한 등분포인장과 굽힘을 받는 유한폭 판재의 혼합 모드 표면균열에 대한 해석)

  • 박성완;홍재학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1592-1602
    • /
    • 1990
  • Mixed mode surface crack in finite-width plate subjected to uniform tension and bending has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles(.a/pha.) of 0.deg., 15.deg., 30.deg., 45.deg., 60.deg., and 75.deg., and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this study. Comparison of the results from both methods showed good agreement.

A Fundamental Analysis of an Interface Crack by Crack Energy Density (균열에너지밀도에 의한 이종재 계면균열의 기초적 검토)

  • 권오헌;도변승언;서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1458-1467
    • /
    • 1992
  • Recently, the composite materials have been researched actively by many researchers because of its useful properties. Especially, an interface crack on the dissimilar material exposes the behavior of the mixed mode crack even though under only the tension stress. In the previous papers, crack energy density(CED) was shown as the crack behavior evaluation parameter which can be expressed consistently from the onset until a final fracture. In a present paper, the basic properties of CED on the interface crack are examined because the results by CED at the homogeneous material above are also expected to be held at the dissimilar material. And we proposed that the contribution of each mode of CED can be separated and be evaluated. Furthermore, the total CED and contribution of each mode are evaluated by domain integral through a finite element analysis at the elastic crack model and the basic examination are carried out.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

Advanced Finite Element Technology for Fracture Mechanics Analysis of Cracked Shells (균열된 쉘의 파괴역학해석을 위한 선진유한요소기법)

  • 우광성
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 1991
  • A new finite element technology based on the p-version of E.F.M. is discussed with reference to its potential for application to stress intensity factor computations in linear elastic fracture mechanics, especially cracked cylindrical shells. It is shown that the p-version model is far better suited for computing the stress intensity factors than the conventional h-version models with the help of three test problems. The main advantage of this technology is that the accuracy of approximation can be established without mesh refinement or the use of special procedures such as crack-tip element and mixed variational approach.

  • PDF

Study of a Mixed Finite Element Model for the Analysis of a Geometrically Nonlinear Plate (기하학적 비선형 판재 해석을 위한 혼합형 FE Model 연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1427-1435
    • /
    • 2010
  • A mixed finite element model was developed using the classical plate theory to analyze the nonlinear bending of a plate. The appropriate weight functions for the constraints integrated over the domain were determined by the Lagrange multiplier method by using the principle of minimum virtual energy; which provides the constitutive relations between force-like variables and strains. All of detail terms of element wise coefficient matrices and associate tangent matrices to be used in the Newton iterative method are presented. Then, the linear solutions of the current model and those of the traditional displacement model under the SS (simple support) boundary conditions were compared with the existing analytical solution. The post-processed images of the nonlinear results of the force-like variables are presented to show the continuity of the solutions at the joint of the element boundaries. Finally, the converged nonlinear finite element solutions of the current model are compared with those of existing traditional displacement model.

Stray Load Loss Analysis of Canned Induction Motor for Hermetic Compressor

  • Yamazaki Katsumi;Haruishi Yoshihisa
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.224-228
    • /
    • 2005
  • In this paper, we investigate the main components of stray load loss of induction motors for ammonia compressors. The variations of the losses at each part of the motor due to load are calculated by the combined 3-D-2D finite element method formulated by the mixed moving coordinate systems. The stray load loss is calculated from these results due the definition of IEEE standard-112. It is clarified that the core loss and the eddy current loss of the can increase due to load, which can be considered as the main part of the stray load loss.

Finite Element Analysis of Step-down Piezoelectric Transformer with Various Shape (형태의 변화에 따른 강압용 압전변압기의 유한요소해석)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.697-700
    • /
    • 2003
  • This paper presents design and analysis of step-down piezoelectric transformer for application to AC-adapters. These transformers are consist of rectangular type and disk type multilayered piezoelectric ceramic plate. This piezoelectric transformer operated in third thickness resonance vibration mode. Finite element methode(FEM) was used for analysing transformer. Vibration mode and electric field of piezoelectric transformer were simulated at resonance frequency. As results, rectangular type transformer's output voltage was higher than the disk type. But disk type transformer's current was lagger than rectangular type. These results are assumed that disk type transformer's mixed vibration mode influence transformer's output characteristics. From these results, we expect that disk type piezoelectric transformer is more adoptable than rectangular plate type piezoelectric transformer for AC adapters.

  • PDF