• Title/Summary/Keyword: metallization

Search Result 342, Processing Time 0.031 seconds

Electrical and Optical Properties on Thickness of Ag and Chalcogenide Thin Films at Programmable Metallization Cell Device (Programmable Metallization Cell(PMC) 소자에서 Ag와 칼코게나이드 박막의 두께에 따른 전기적 광학적 특성)

  • Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.24-24
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30nm and 50nm respectively, device have excellent characteristics.

  • PDF

Design of Tight Coupled 1/4 Wavelength Backward-Wave Directional Coupler using Coupled Lines with Finite Metallization Thickness (도체 두께를 가진 결합선로를 이용하여 강한 결합특성을 갖는 1/4파장 역방향 방향성 결합기의 설계)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1004-1010
    • /
    • 2003
  • In this paper, the 1/4 wavelength backward-wave directional coupler using coupled lines with finite metallization thickness is described. A mode-matching method, simple and fast approach to the quasi-static analysis, has been used to analyse this structure. The numerical results show that it is possible to overcome the disadvantages of weakly coupling, low directivity, and narrow strip distance non-realizable in the case of 1/4 wavelength backward-wave directional coupler with zero thickness conductor. It is also revealed that thicker metallization causes longer coupler length in the case of backward-wave symmetrical parallel coupled line directional coupler. The finite metallization thickness can be a new parameter for tight coupling in the design of backward-wave directional couplers, which enables us to design more accurate properties of monolithic microwave integrated circuits.

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device

  • Kim, Sungjun;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having $Ag/Si_3N_4/TiN$ and $Ag/Si_3N_4/p^+$ Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET

  • Lee, Jung-Yeon;Park, Bong-Ryeol;Lee, Jae-Gil;Lim, Jongtae;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • In this study, the effects of forming gas post metallization annealing (PMA) on recessed AlGaN/GaN-on-Si MOSHFET were investigated. The device employed an ICPCVD $SiO_2$ film as a gate oxide layer on which a Ni/Au gate was evaporated. The PMA process was carried out at $350^{\circ}C$ in forming gas ambient. It was found that the device instability was improved with significant reduction in interface trap density by forming gas PMA.

DNA Metallization for Nanoelectronics (DNA 기반 금속 나노 와이어의 제작기술)

  • Han, Gyeongyeop;Lee, Jungkyu K.
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.253-257
    • /
    • 2018
  • DNA metallization has been emerged as a candidate for fabricating nanocircuits because of its simple process over a large area on a surface. With unique properties, DNA can be an excellent template to achieve molecular electronics. Thus, we introduced the preparation and properties of DNA metallization, and also suggested future directions in this review.

The Solid-electrolyte Characteristics of Ag-doped Germanium Selenide for Manufacturing of Programmable Metallization Cell (Programmable Metallization Cell 제작을 위한 Ag-doped Germanium Selenide의 고체전해질 특성)

  • Nam, Ki-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.86-87
    • /
    • 2008
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about 1 M$\Omega$ to several hundreds of $\Omega$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

Patterning of Super-hydrophobic Surface Treated Polyimide Film (초발수 기판의 친수 패터닝을 이용한 금속배선화)

  • Rha, Jong-Joo;Um, Dae-Yong;Lee, Gun-Hwan;Choi, Doo-Sun;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1553-1555
    • /
    • 2008
  • Super-hydrophobic treated Polyimide film was used as a flexible substrate for developing a new method of metallization. Hydrophilic patterns were fabricated by IN irradiation through shadow mask. Patterned super-hydrophobic substrate was dipped into a bath containing silver nano ink Silver ink was only coated on hydrophilic patterned area. Metal lines of $600{\mu}m$ pitch were fabricated successfully. However, their thickness was too thin to serve as interconnection. To overcome this problem, iterative dipping was conducted. After repeating five times, the thickness of silver metal lines were increased to over than $2{\mu}$. After heat treatment of silver lines, their resistivities were reduced to order of $30{\mu}{\Omega}$-cm the similar level of values reported in other literatures. So, a new method of metallization has high potential for application of RFID antenna and flexible electronics substrates.

  • PDF

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

The Solid-electrolyte Characteristics of Ag-doped Germanium Selenide for Manufacturing of Programmable Metallization Cell (Programmable Metallization Cell 제작을 위한 Ag-doped Germanium Selenide의 고체전해질 특성)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.382-385
    • /
    • 2009
  • In this study, we studied switching characteristics of germanium selenide(Ge-Se)/silver(Ag) contact formed by photodoping for use in programmable metallization cell devices. We have been investigated the switching characteristics of Ag-doped chalcogenide thin films. Changed resistance range by direction of applied voltage is about $1\;M{\Omega}$ $\sim$ hundreds of $\Omega$. The cause of these resistance change can be thought the same phenomenon such as resistance variation of PMC-RAM. The results imply that the separated Ag-ions react the atoms or defects in chalcogenide thin films.

Effect of Post-Metallization Anneal (PMA) on Interface Trap Density of Si-$SiO_2$ (금속후 어닐링 방법이 Si-$SiO_2$ 계면 전하 농도에 미치는 영향)

  • Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.157-158
    • /
    • 2007
  • Effects of post-metallization anneal (PMA) on interface trap characteristics of Si-$SiO_2$ are studied. The conventional PMA method utilizes forming gas anneal, where 10% hydrogen in nitrogen atmosphere is used. A new PMA method utilizes hydrogen rich PECVD- silicon nitride $(SiN_x)$ film as a hydrogen diffusion source and a out-diffusion blocking layer. It can be shown through charge pumping current measurement that the new PMA is indeed effective to decrease Si-$SiO_2$ interface trap density.

  • PDF