DOI QR코드

DOI QR Code

DNA Metallization for Nanoelectronics

DNA 기반 금속 나노 와이어의 제작기술

  • Han, Gyeongyeop (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Jungkyu K. (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 한경엽 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이정규 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2018.04.30
  • Accepted : 2018.05.16
  • Published : 2018.06.10

Abstract

DNA metallization has been emerged as a candidate for fabricating nanocircuits because of its simple process over a large area on a surface. With unique properties, DNA can be an excellent template to achieve molecular electronics. Thus, we introduced the preparation and properties of DNA metallization, and also suggested future directions in this review.

DNA를 기반으로 한 금속 나노와이어는 전기적인 물성은 떨어지지만, 제작 방식이 간단하고, 대면적에서 대량으로 제작할 수 있으며, 유기 반응을 통해 분자 소자 제작의 기판으로도 사용가능한 차세대 재료로 전망된다. 본 총설에서는 DNA 금속화 반응을 이용한 나노와이어의 제작 및 3차원 구조체의 제작 기술에 대해 소개하고, 이와 관련한 연구 현황과 발전 방향에 대해 논의하고자 한다.

Keywords

References

  1. E. P. Gates, A. M. Dearden, and A. T. Woolley, DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry, Crit. Rev. Anal. Chem., 44, 354-370 (2014). https://doi.org/10.1080/10408347.2014.910636
  2. Samsung Newsroom, https://news.samsung.com/global/samsung-elec-tronics-breaks-ground-on-new-euv-line-in-hwaseong (accessed April 27, 2018).
  3. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297-302 (2006). https://doi.org/10.1038/nature04586
  4. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391, 775-778 (1998). https://doi.org/10.1038/35826
  5. Z. Deng and C. Mao, DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays, Nano Lett., 3, 1545-1548 (2003). https://doi.org/10.1021/nl034720q
  6. X. Michalet, Stretching single-stranded DNA on a surface, Nano Lett., 1, 341-343 (2001). https://doi.org/10.1021/nl010035c
  7. K. Keren, M. Krueger, R. Gilad, G. Ben-Joseph, U. Sivan, and E. Braun, Sequence-specific molecular lithography on single DNA molecules, Science, 297, 72-75 (2002). https://doi.org/10.1126/science.1071247
  8. J. K. Lee, Y. H. Jung, R. M. Stoltenberg, J. B.-H. Tok, and Z. Bao, Synthesis of DNA-organic molecule-DNA triblock oligomers using the amide coupling reaction and their enzymatic amplification, J. Am. Chem. Soc., 130, 12854-12855 (2008). https://doi.org/10.1021/ja8044458
  9. H. Yokota, J. Sunwoo, M. Sarikaya, G. V. D. Engh, and R. Abersold, Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy, Anal. Chem., 71, 4418-4422 (1999). https://doi.org/10.1021/ac9902695
  10. H. Yokota, F. Johnson, H. Lu, R. M. Robinson, A. M. Belu, M. D. Garrison, B. D. Ratner, B. J. Trask, and D. L. Miller, A new method for straightening DNA molecules for optical restriction mapping, Nucleic Acids Res., 25, 1064-1070 (1997). https://doi.org/10.1093/nar/25.5.1064
  11. G. Yu, A. Kushwaha, J. K. Lee, E. S. G. Shaqfeh, and Z. Bao, The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics, ACS Nano, 5, 275-282 (2011). https://doi.org/10.1021/nn102669b
  12. H. Nakao, H. Hayashi, T. Yoshino, S. Sugiyama, K. Otobe, and T. Ohtani, Development of novel polymer-coated substrates for straightening and fixing DNA, Nano Lett., 2, 475-479 (2002). https://doi.org/10.1021/nl025528b
  13. A. Filoramo, DNA metallization processes and nanoelectronics. In: X. Baillin, C. Joachim, and G. Poupon (eds.), Nanopackaging: from Nanomaterials to the Atomic Scale, p. 17-32, Springer-Verlag, NY, USA (2015).
  14. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science, 301, 1882-1884 (2003). https://doi.org/10.1126/science.1089389
  15. O. Harnack, W. E. Ford, A. Yasuda, and J. M. Wessels, Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors, Nano Lett., 2, 919-923 (2002). https://doi.org/10.1021/nl020259a
  16. A. Ongaro, F. Griffin, P. Beecher, L. Nagle, D. Iacopino, A. Quinn, G. Redmond, and D. Fitzmaurice, DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate, Chem. Mater., 17, 1959-1964 (2005). https://doi.org/10.1021/cm047970w
  17. M. Mertig, L. C. Ciacchi, R. Seidel, W. Pompe, and A. D. Vita, DNA as a selective metallization template, Nano Lett., 2, 841-844 (2002). https://doi.org/10.1021/nl025612r
  18. J. Lund, J. Dong, Z. Deng, C. Mao, and B. A. Parviz, Electrical conduction in 7 nm wires constructed on ${\lambda}$-DNA, Nanotechnology, 17, 2752-2757 (2006). https://doi.org/10.1088/0957-4484/17/11/007
  19. J. Richter, M. Mertig, and W. Pompe, Construction of highly con- ductive nanowires on a DNA template, Appl. Phys. Lett., 78, 536-538 (2001). https://doi.org/10.1063/1.1338967
  20. K. Nguyen, M. Monteverde, A. Filoramo, L. Goux-Capes, S. Lyonnais, P. Jegou, P. Viel, M. Goffman, and J. Bourgoin, Synthesis of thin and highly conductive DNA-based palladium nanowires, Adv. Mater., 20, 1099-1104 (2008). https://doi.org/10.1002/adma.200701803
  21. C. F. Monson and A. T. Woolley, DNA-templated construction of copper nanowires, Nano Lett., 3, 359-363 (2003). https://doi.org/10.1021/nl034016+
  22. D. Aherne, A. Satti, and D. Fitzmaurice, Diameter-dependent evo- lution of failure current density of highly conducting DNA-tem- plated gold nanowires, Nanotechnology, 18, 125205-125210 (2007). https://doi.org/10.1088/0957-4484/18/12/125205
  23. H. A. Becerril, P. Ludtke, B. M. Willardson, and A. T. Woolley, DNA-templated nickel nanostructures and protein assemblies, Langmuir, 22, 10140-10144 (2006). https://doi.org/10.1021/la061740+
  24. Q. Gu, C. Cheng, and D. T. Haynie, Cobalt metallization of DNA: toward magnetic nanowires, Nanotechnology, 16, 1358-1363 (2005). https://doi.org/10.1088/0957-4484/16/8/063
  25. B. Uprety, J. Jensen, B. R. Aryal, R. C. Davis, A. T. Woolley, and J. N. Harb, Directional growth of DNA-functionalized nanorods to enable continuous, site-specific metallization of DNA origami templates. Langmuir, 33, 10143-10152 (2017). https://doi.org/10.1021/acs.langmuir.7b01659
  26. J. Choi, H. Chen, F. Li, L. Yang, S. S. Kim, R. R. Naik, P. D. Ye, and J. H. Choi, Nanomanufacturing of 2D transition metal dichalcogenide materials using self-assembled DNA nanotubes, Small, 11, 5520-5527 (2015). https://doi.org/10.1002/smll.201501431
  27. J. K. Lee, M. R. Kim, I. S. Choi, Y. H. Jung, and Yang-Gyun Kim, DNA-templated metallization for formation of porous and hollow silver-shells, Bull. Korean Chem. Soc., 34, 986-988 (2013). https://doi.org/10.5012/bkcs.2013.34.3.986
  28. Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, Three-dimensional structures self-assembled from DNA bricks, Science, 338, 1177-1183 (2012). https://doi.org/10.1126/science.1227268
  29. S. Helmi, C. Ziegler, D. J. Kauert, and R. Seidel, Shape-controlled synthesis of gold nanostructures using DNA origami molds, Nano Lett., 14, 6693-6698 (2014). https://doi.org/10.1021/nl503441v