DOI QR코드

DOI QR Code

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device

  • Kim, Sungjun (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University) ;
  • Cho, Seongjae (Department of Electronic Engineering, Gachon University) ;
  • Park, Byung-Gook (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University)
  • Received : 2015.07.22
  • Accepted : 2015.10.05
  • Published : 2016.04.30

Abstract

In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having $Ag/Si_3N_4/TiN$ and $Ag/Si_3N_4/p^+$ Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.

Keywords

References

  1. R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, no. 11, pp. 833-840, Nov. 2011. https://doi.org/10.1038/nmat2023
  2. H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, "Gd-doping effect on performance of $HfO_2$ based resistive switching memory devices using implantation approach," Appl. Phys. Lett., vol. 98, no. 4, pp. 042105-1-042105-3, Jan. 2011. https://doi.org/10.1063/1.3543837
  3. H.-D. Kim, M. J. Yun, and S. Kim, "All ITO-Based Trasparent Resistive Switching Random Access Memory Using Oxygen Doping Method," J. Alloy. Compd., vol. 653, pp. 534-538, Dec. 2015. https://doi.org/10.1016/j.jallcom.2015.09.076
  4. H.-D. Kim, M. J. Yun, and T. G. Kim, "Formingfree bipolar resistive switching in nonstoichiometric ceria films," Phys. Status Solidi. R., vol. 9, no. 4, pp. 264-268, Mar. 2015. https://doi.org/10.1002/pssr.201510022
  5. S. Kim, S. Jung, and B.-G. Park, "Investigation of bipolar resistive switching characteristics in $Si_3N_4$-based RRAM with metal-insulator-silicon structure," Int. J. Nanotechnol., vol. 11, no. 1-4, pp. 126-134, Mar. 2014. https://doi.org/10.1504/IJNT.2014.059816
  6. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of $Si_3N_4$-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications," Appl. Phys. Lett., vol. 106, no. 21, pp. 212106-1-212106-4, May. 2015. https://doi.org/10.1063/1.4921926
  7. S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 6, pp. 062201-1-052204-6, Nov. 2015. https://doi.org/10.1116/1.4931946
  8. K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, "A Finite Element Model for Bipolar Resistive Random Access Memory," J. Semicod. Tech. Sci., vol. 14, no. 3, pp. 268-271, Jun. 2014. https://doi.org/10.5573/JSTS.2014.14.3.268
  9. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals," IEICE Trans. Electron., vol. E98-C, No. 5, pp. 429-432, May. 2015. https://doi.org/10.1587/transele.E98.C.429
  10. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Gradual bipolar resistive switching in Ni/$Si_3N_4/n^+-Si$ resistive-switching memory device for high-density integration and low-power applications," Solid-State Electron., vol. 114, pp. 94-97, Dec. 2015. https://doi.org/10.1016/j.sse.2015.08.003
  11. H.-D. Kim, M. Yun, and S. Kim, "Self-rectifying resistive switching behavior observed in $Si_3N_4$-based resistive random access memory devices," J. Alloy. Compd., vol. 651, pp. 340-343, Dec. 2015. https://doi.org/10.1016/j.jallcom.2015.08.082
  12. D. Walczyk, Ch. Walczyka, T. Schroedera, T. Bertauda, M. Sowińskaa, M. Lukosiusa, M. Fraschkea, B. Tillacka, and Ch. Wengera, "Resistive switching characteristics of CMOS embedded $HfO_2$-based 1T1R cells," Microelectron Eng., vol. 88, no. 7, pp. 1133-1135, Jul. 2011. https://doi.org/10.1016/j.mee.2011.03.123
  13. H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 5, pp. 052204-1-052204-5, Aug. 2015. https://doi.org/10.1116/1.4928412
  14. Y. Kim, J. Y. Seo, S.-H Lee, and B.-G. Park, "A new programming method to alleviate the program speed variation in three-dimensional stacked array NAND flash memory," J. Semicod. Tech. Sci., vol. 14, no. 5, pp. 566-571, Oct. 2014. https://doi.org/10.5573/JSTS.2014.14.5.566
  15. W. Kwon, I. J. Park, and C. Shin, "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage," J. Semicond. Technol. Sci., vol. 15, no. 2, pp. 286-291, Apr. 2015. https://doi.org/10.5573/JSTS.2015.15.2.286
  16. R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan and H. Hwang, "Reproducible hysteresis and resistive switching in metal-$Cu_xO$-metal heterostructures," Appl. Phys. Lett., vol. 90, no. 4, pp. 042107-1-042107-3, Jan. 2007. https://doi.org/10.1063/1.2436720
  17. Q. Liu. W. Guan, S. Long, R Jia, and M. Liu, "Resistive switching memory effect of $ZrO_2$ films with $Zr^+$ implanted," Appl. Phys. Lett., vol. 92, no. 1, pp. 012117-1-012117-3, May. 2008. https://doi.org/10.1063/1.2832660
  18. S. Yu and, H.-S. P. Wong "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)," IEEE Trans. Electron. Dev., vol. 58, no. 5, pp.1352-1360, May. 2011. https://doi.org/10.1109/TED.2011.2116120
  19. S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, and K.-H. Kim, "Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film," IEEE Electron. Dev. Lett., vol. 30, no. 2, pp. 120-122, Feb. 2009. https://doi.org/10.1109/LED.2008.2009774
  20. A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, and M. Ribes "Bipolar resistance switching in chalcogenide materials," Phys. Status Solidi. R., vol. 208, no. 10, pp. 2303-2308, Oct. 2011. https://doi.org/10.1002/pssa.201000767
  21. Y. C. Yang, F. Pan, F. Zeng, and M. Liu, "Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization," J. Appl. Phys., vol. 106, no. 12, pp. 123705-1-123705-7, Dec. 2009. https://doi.org/10.1063/1.3273329
  22. J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. S. Roh, S.-J. Hong, I. H. Cho, H.-I. Kwon, C. H. Park, B.-G. Park, and J.-H. Lee, "Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices," Appl. Phys. Lett., vol. 101, no. 10, pp. 103506-1-103506-3, Sep. 2012. https://doi.org/10.1063/1.4751248
  23. J. Molina, R. Valderrama, C. Zuniga, P. Rosales, W. Calleja, A. Torres, J. D. Hidalga, and E. Gutierrez, "Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of $Al/Al_2O_3/Al$ and $Al/Al_2O_3/W$ structures fabricated on glass at $300^{\circ}C$," Microelectron. Reliab., vol. 54, no. 12, pp. 2747-2753, Dec. 2014. https://doi.org/10.1016/j.microrel.2014.07.006

Cited by

  1. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid vol.9, pp.40, 2017, https://doi.org/10.1039/C7NR01840A