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Abstract—In this study, we fabricated Ag-based 
electrochemical metallization memory devices which 
is also called conductive-bridge random-access 
memory (CBRAM) in order to investigate the 
resistive switching behavior depending on the bottom 
electrode (BE). RRAM cells of two different layer 
configurations having Ag/Si3N4/TiN and Ag/Si3N4/p+ Si 
are studied for metal-insulator-metal (MIM) and 
metal-insulator-silicon (MIS) structures, respectively. 
Switching voltages including forming/set/reset are 
lower for MIM than for MIS structure. It is found 
that the workfunction different affects the 
performances.    
 
Index Terms—Electrochemical metallization memory, 
conductive-bridge random-access memory, silicon 
nitride, metal-insulator-metal, metal-insulator-silicon   

I. INTRODUCTION 

In recent days, resistive random-access memory 
(RRAM) has attracted attention as a promising candidate 
for the next-generation non-volatile memory (NVM) due 
to its superior scalability, high-speed operation, and low 
power consumption [1-13] in order to overcome the 

limitations such as scaling issues of conventional 
memories [14, 15]. There can be a number of resistive 
switching mechanisms classified into thermo-chemical, 
valence-change, and electro-chemical effects depending 
on the material properties of electrode and resistive 
switching layer [1]. Also, it has been reported that 
RRAM device based on electrochemical metallization 
mechanism is particularly suitable for embedded NVM 
applications by adopting 1-transistor 1-resistor (1T1R) 
configuration due to its fast switching speed and low 
switching voltage [12, 13]. RRAM devices based on 
conventional metal-insulator-metal (MIM) structure have 
been widely researched, whereas metal-insulator-silicon 
(MIS) structure which can be integrated with CMOS 
circuits (the easiness is improved if 1T1R structure is 
adopted) has been seldom studied so far [5, 6, 9]. In this 
work, in order to further study RRAM device in the MIS 
structure, we discuss different resistive switching 
behaviors between RRAM cells having TiN and p+ Si.  

II. EXPERIMENTAL 

Fig. 1(a) and (b) show the schematic of RRAM cells 
having MIM structure, Ag/Si3N4/TiN, and MIS structure, 
Ag/Si3N4/Si, respectively. For the MIM device, a 100-
nm-thick TiN bottom electrode (BE) was deposited using 
a thermal evaporator after SiO2 deposition on the Si 
substrate. On the other hand, the BE of MIS device was 
formed in the Si substrate by ion implantation of BF2

+ 
(an acceleration energy of 40 keV and with a dose of 
5×1015 cm-2). The doping concentration and junction 
depth are approximately 1×1020 cm-3 and 1 μm, 
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respectively [9]. Subsequently, Si3N4 switching layer 
(SL) with different thicknesses of 5, 10, 20, and 30 nm 
were deposited by a plasma-enhanced chemical vapor 
deposition (PECVD) at 300˚C using 5% SiH4/N2 (800 
sccm), NH3 (10 sccm), and N2 (1200 sccm) as the 
mixture precursor for both devices. Finally, Ag top 
electrode (TE) with a thickness of 100 nm was 
constructed via thermal evaporator using a shadow mask 
with circular patterns with 100-μm radii for both 
structures. All the electrical measurements were carried 
out by Keithley 4200-SCS semiconductor parameter 
analyzer (SPA) in the DC voltage sweep mode as 
illustrated in Fig. 1(a). For the RRAM operations, BEs 
were grounded and the control bias was applied to TEs.  

III. RESULTS AND DISCUSSION 

Fig. 2 exhibits the typical bipolar I-V curves from the 
fabricated RRAM cells with Ag/Si3N4/TiN and 
Ag/Si3N4/p+ structures. Initial electrical forming process 
was performed under a high enough positive voltage to 
activate the pristine RRAM cell and to prepare low-
resistance state (LRS), which reached 1 V and 4 V, 
respectively for MIM and MIS cells, as shown in the 
figure. Subsequently, the RRAM cells are switched from 
LRS to high-resistance state (HRS) by backward sweep 
down to certain negative voltages for the reset process. 
The devices return to LRS over the positive sweeps for 
set process. For the MIS RRAM cell, the magnitude of 
forming voltage was larger than that of set voltage. For 
the forming and set processes, the compliance current 
limit was set to 1 mA to avoid damage of the Si3N4 layer. 
In order to investigate the conduction mechanisms via 
the conducting filaments in SLs, I-V curves are depicted 
in the logarithmic scale for the devices with MIM and 

MIS structures as shown in Fig. 3(a) and (b), respectively. 
Ohmic transport with the slope of 1 is observed in the 
LRS curves from both devices. However, the I-V curves 
in the HRS are divided into three different linear regions 
for both devices: low-voltage region demonstrating 
Ohmic conduction having slope of 1, higher-voltage 
region with the slope of 2, and more drastically changing 
current region with slopes of more than 3 before soft 
breakdown occurs for set switching. The experimental 
results show good agreements with space-charge-limited 
current (SCLC) mechanism for both devices [16, 17]. It 
is widely believed that the resistive switching behavior of 
RRAM devices with Ag TE with high diffusivity in 
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Fig. 1. Device schematics (a) Ag/Si3N4/TiN, (b) Ag/Si3N4/p+ Si 
RRAM devices. 

 
 

-2 -1 0 1 2 3 4 510-13

10-11

10-9

10-7

10-5

10-3

10-1

 MIM
 MISCu

rre
nt

 [A
]

Voltage [V]

Si3N4(10 nm)

① forming

② reset

③ set  

Fig. 2. I-V characteristics of Ag/Si3N4/TiN and Ag/Si3N4/p+ Si 
RRAM cells. 
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Fig. 3. Logarithmic I-V plots of (a) Ag/Si3N4/TiN, (b) 
Ag/Si3N4/p+ Si RRAM cells. 
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electrolyte and inert BE is strongly related to the 
formation and dissolution of Ag-rich conducting filament 
[18, 19]. Examples of electrolyte materials for SL are 
chalcogenides, metal oxide, and nitride [20, 21]. In one 
of our previous works, it was demonstrated that the 
conducting filaments in the Si3N4 RRAM using Ag TE 
had metallic properties by series of temperature-
controlled experiments [9].  

Therefore, resistive switching in both devices 
attributes to the diffusion of Ag ions as the result of 
oxidation and reduction processes as schematically 
shown in Fig. 4. Ag ions migrate toward BE when a 
positive bias is applied to Ag TE acting as the conducting 
filament source. Then, Ag-rich conducting filament is 
formed between TE and BE through Si3N4 layer, which 
leads to LRS. Conversely, over the reset process with a 
negative bias on the TE, Ag-rich filament near the BE is 
electrochemically dissolved, which results in HRS. Fig. 5 
shows the distributions of (a) forming, (b) set, and (c) 
reset voltages with different Si3N4 thicknesses of 5, 10, 
20, and 30 nm. MIM cells with a 5-nm-thick Si3N4 layer 
show no switching operation at 1-mA compliance current 
due to the initially high leakage level as shown in Fig. 
5(a). Forming voltage increases with Si3N4 thickness 
since a higher electric field is needed for forming 
conducting filament bridges through the thick dielectric. 
For instance, 15 V or higher forming voltage is required 
for MIS devices as shown in Fig. 5(a). On the other hand, 
set and reset voltages are less affected by Si3N4 thickness. 
It is due to the fact that the conducting filaments are not 
totally ruptured by partially disconnected in the vicinity 
of TE. Thus, although forming voltage is largely 
determined by the thickness of SL since the initial 
connection by conducting filament between BE and TE 
takes place through the SL, the set and reset voltages are 

lower than forming voltage. Forming-less LRS can be 
also obtained when Si3N4 thickness is below 5 nm and 10 
nm for MIM and MIS devices, respectively. All the 
forming/set/reset voltages of MIM device have smaller 
magnitudes compared with those of MIS device, Fig. 
6(a) and (b) show the energy-band diagrams of MIM and 
MIS structures, respectively, under the flat-band 
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Fig. 4. Schematic showing the formation and rupture of 
conducting filament in Ag-based RRAM device. 
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Fig. 5. Statistical distributions of (a) forming, (b) set, (c) reset 
voltages as a function of Si3N4 thickness for RRAM devices 
with Ag/Si3N4/TiN and Ag/Si3N4/p+ Si structures. 
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conditions fully considering the material parameters [9, 
22]. Fig. 6(c) and (d) show the band diagrams of MIS 
and MIS structures, respectively, under thermal 
equilibrium with no electrical bias. As can be implied by 
the figures, the electric field across the Si3N4 switching 
layer is determined by the workfunction difference 
between BE and TE (ΦBE - ΦTE). Although higher 
electric field is induced in the Si3N4 layer of the MIS 
structure, tunneling from the Si conduction band is much 
smaller than that of MIM device, since the Si substrate is 
high p-type doped. Therefore, a higher voltage is 
required to conduct forming process in the MIS structure 
than in the MIM device. Also, it is known that the 
roughness of BE has a substantial effect on switching 
voltage [23]. The surface roughness of TiN BE should be 
much more uneven than that of Si-substrate BE since TiN 
was deposited by a physical vapor deposition (PVD) 
process. The rough surface of MIM-structure device can 
generate more traps between BE and SL. The electric 
fields are not uniformly distributed but can be focused on 
the field-concentrating local spots over the surface, by 
which the switching voltages are reduced in effect.  

IV. CONCLUSIONS 

In this work, RRAM devices having Ag/Si3N4/TiN and 
Ag/Si3N4/p+ Si structures were fabricated their resistive 
switching characteristics have been studied. MIM device 
showed lower operation voltages compared with MIS 
device. It is concluded that workfunction difference and 

surface roughness play an important role in determining 
the switching voltages of RRAM cell. By the results, it is 
assured that the layer configuration in the RRAM device 
is also crucial for achieving the low-power operation 
capability.  
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