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Abstract—In this study, the effects of forming gas post 
metallization annealing (PMA) on recessed 
AlGaN/GaN-on-Si MOSHFET were investigated. The 
device employed an ICPCVD SiO2 film as a gate oxide 
layer on which a Ni/Au gate was evaporated. The 
PMA process was carried out at 350oC in forming gas 
ambient. It was found that the device instability was 
improved with significant reduction in interface trap 
density by forming gas PMA.   
 
Index Terms—AlGaN/GaN heterostructure, forming 
gas annealing, interface trap density, MOSHFET, 
post metallization annealing   

I. INTRODUCTION 

AlGaN/GaN heterostructures are a promising 
candidate for use in high-power and high-efficiency 
switching applications owing to their superior material 
properties, such as high breakdown field and high 
electron mobility [1-4]. In particular, AlGaN/GaN wafers 
grown on silicon substrates have gained additional 
attention due to their cost competitiveness with current Si 
technology. Prototype AlGaN/GaN FETs and power ICs 
have already demonstrated very low on-resistance and 
superior conversion efficiency in comparison with the 
state-of-the-art Si counterparts [5-7].  

Insulated gate configuration has been widely 

employed in AlGaN/GaN power FETs because the 
insulated gate can suppress the off-state leakage current 
and adjust the threshold voltage. However, the bulk and 
trap charges generated during deposition and following 
process steps have strong influence on device 
characteristics, which becomes more critical when the 
device employs recessed-gate configuration with ex-situ 
gate insulator deposition. Since surface and interface 
states are strongly process-dependent, the gate insulator 
process must be carefully optimized. 

It was reported that the insulator itself and interface 
conditions between insulator and semiconductor surface 
could be improved by appropriate post-annealing 
processes [8-12]. In this study, we investigated the 
effects of forming gas post metallization annealing 
(PMA) on recessed AlGaN/GaN-on-Si MOSHFET with 
ICPCVD SiO2 gate oxide. 

II. EXPERIMENTS AND DISCUSSIONS 

Fig. 1 shows the cross-sectional schematic of recessed 
AlGaN/GaN-on-Si MOSHFET. The epitaxial layer 
structure consisted of a 4 nm undopped GaN capping 
layer, a 20 nm undoped AlGaN barrier, a 5 µm undoped 
GaN buffer on an N-type Si (111) substrate. The recessed 
gate region formed the metal gate/SiO2/GaN MOS 
configuration whereas the parasitic channel region had 
the AlGaN/GaN heterostructure to keep a low channel 
resistance. The thickness of SiO2 gate oxide was 35 nm. 
The 1 µm overhang from the gate edge formed a field 
plate under which a 150 nm SiNx layer was inserted. The 
source-to-gate distance, gate length, and gate-to-drain 
distance were 3, 2, and 15 µm, respectively. 

Devices were fabricated using the following process 
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steps. After cleaning the wafer, a 150 nm SiNx film, as a 
prepassivation layer, was deposited at 250oC using 
ICPCVD. Mesa isolation and gate recess were carried out 
using Cl2/BCl3 based ICP-RIE. As shown in Fig. 1(c), a 
sloped gate recess profile was obtained to suppress the 
localized high electric field. Ohmic contacts were formed 
by Si/Ti/Al/Mo/Au metallization followed by RTA 
annealing at 830oC. A 35 nm SiO2 film was deposited at 
250oC using ICPCVD [13]. A Ni/Au layer was 
evaporated for the gate and pad regions. Lastly, PMA 
was carried out by RTA at 350oC for 3 min in forming 
gas ambient (H2(5%) + N2(95%)) with the chamber 
pressure of 5 Torr. 

 
1. Current-Voltage Characteristics  

 
Current-voltage (I-V) transfer measurements were 

repeated using a dual sweep mode, i.e. positive and 
negative directions. As shown in Fig. 2, the initial 
characteristics before PMA process exhibited significant 

hysteresis with memory effects, suggesting negatively 
charged trapping effects. In contrast, no hysteresis was 
observed with a slightly enhanced on/off ratio after 
forming gas PMA. It should be noted that negative shift 
in threshold voltage was observed after forming gas 
PMA. In order to take a closer look at threshold voltage 
shift and uniformity issues, about 30 devices were 
measured at various locations in the sample. The 
threshold voltage variations before and after PMA are 
compared in Fig. 3. The initial threshold voltage was 
widely distributed from 1 to 4 V before PMA. On the 
other hand, the variation was significantly reduced to the 
range between -0.2 and 0.7 V after PMA. Since the 
threshold voltage is a strong function of oxide and 
interface charges, the threshold voltage and its 
uniformity must be associated with the change in 
oxide/interface charges during forming gas PMA. It is 
speculated that large variation of threshold voltage before 
PMA implies non-uniform distribution of oxide bulk 
charges caused by oxygen vacancies, and the 
hydrogenated dangling bonds and reduced oxygen 
vacancies after forming gas PMA are responsible for the 
improved uniformity and stability. Since the 
hydrogenated dangling bonds in SiO2 act as positive 
charges, they would make negative shift in threshold 
voltage [14].  

In terms of breakdown voltage characteristics, no 
significant change was observed after the forming gas 
PMA. Typical off-state breakdown voltages both before 
and after PMA were at least 1000 V. 

 

Fig. 1. (a) Cross-sectional schematic of recessed AlGaN/GaN 
MOSHFET, (b, c) TEM images of the recessed MOS gate 
region. 
 

 

Fig. 2. Hysteresis of I-V transfer characteristics before (solid 
lines) and after (dot lines) forming gas PMA. The first, second, 
and third sweeps are shown in red, green, and black, 
respectively. 
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2. Capacitance-Voltage Characteristics and Interface 
Trap Density Extraction 

 
In order to investigate the interface quality, the 

capacitance-voltage (C-V) characteristics were measured 
before and after PMA. C-V measurements were carried 
out using a circular recessed C-V pattern with a diameter 
of 50 mm. As compared in Fig. 4(a), the C-V hysteresis at 
1 MHz was significantly reduced from 800 to 150 mV 
after forming gas PMA. 

In order to quantitatively analyze the interface 
conditions, two different extraction methods, i.e. Terman 
[15] and Conductance [16] methods, were employed to 
estimate the interface trap density before and after PMA. 

In Terman method, the interface trap density (Dit) is 
extracted by the following equation [17, 18] 
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where Cox is the oxide capacitance and q is the electronic 
charge. The ideal capacitance characteristics were 
obtained by Schroder’s method [19].  

Unlike Terman method, Conductance method utilizes 
frequency dependent C-V characteristics to estimate Dit. 
The C-V characteristics were measured from 1 kHz to 1 
MHz from which normalized conductance values were 
calculated as plotted in Figs. 4(b) and (c). The 
relationship between the normalized conductance (Gp/w) 
and Dit is given by [19] 

 

 ( )

2
p m ox

22 2
m ox m

G ωG C
ω G ω C C

=
+ -

   (2a) 

 

Fig. 3. Threshold voltage variation (a) before, (b) after forming 
gas PMA.  
 

 

Fig. 4. (a) C-V hysteresis characteristics at 1 MHz and Gp/w
versus  w, (b) before, (c) after forming gas PMA. 
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where Gp is the parallel conductance, ω is 2pf (f = 
measurement frequency), Gm is the measured 
conductance, Cm is the measured capacitance, Cox is the 
oxide capacitance, and τit is the trap time constant. An 
appropriate expression giving Dit in terms of the 
measured maximum conductance is Dit » 2.5(Gp/qw) 
when w » 2/ τit [19, 20]. The relationship between τit and 
the trap state energy (Ec-Et) is given by [21] 
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where σit is the capture cross section of trap states, Nc is 
the density of states in the conduction band, and υT is 
thermal velocity. The values used for σit, Nc, and υT in 
this work are 3.4×10-15 cm2, 4.3×1014×T3/2 cm-3, and 
2.6×107 cm/s , respectively [21, 22]. 

The Dit values extracted using Terman and 
Conductance methods are plotted in Fig. 5. Although two 
different methods did not give the same Dit values, both 
methods clearly exhibited noticeable reduction in Dit 
values after forming gas PMA. In comparison with other 
reports for GaN MIS configuration [23-25], very low Dit 
values were achieved in this work. It is suggested that the 
reduced interface trap states after forming gas PMA are 
responsible for the reduced hysteresis phenomenon. 

III. CONCLUSION 

We investigated the effects of forming gas PMA on 
recessed AlGaN/GaN-on-Si MOSHFETs that employed a 
SiO2 gate oxide. It was found that the forming gas PMA 
not only eliminated the hysteresis phenomenon but also 
improved the threshold voltage uniformity. It is 
suggested that the hydrogenated dangling bonds and 
reduced oxygen vacancy in conjunction with the 
improved interface conditions are responsible for the 
improved device characteristics. 
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