• Title/Summary/Keyword: maximal operator

Search Result 92, Processing Time 0.019 seconds

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

GENERALIZED FRÉCHET-URYSOHN SPACES

  • Hong, Woo-Chorl
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.261-273
    • /
    • 2007
  • In this paper, we introduce some new properties of a topological space which are respectively generalizations of $Fr\'{e}chet$-Urysohn property. We show that countably AP property is a sufficient condition for a space being countable tightness, sequential, weakly first countable and symmetrizable, to be ACP, $Fr\'{e}chet-Urysohn$, first countable and semimetrizable, respectively. We also prove that countable compactness is a sufficient condition for a countably AP space to be countably $Fr\'{e}chet-Urysohn$. We then show that a countably compact space satisfying one of the properties mentioned here is sequentially compact. And we show that a countably compact and countably AP space is maximal countably compact if and only if it is $Fr\'{e}chet-Urysohn$. We finally obtain a sufficient condition for the ACP closure operator $[{\cdot}]_{ACP}$ to be a Kuratowski topological closure operator and related results.

PARAMETRIC GENERALIZED MULTI-VALUED NONLINEAR QUASI-VARIATIONAL INCLUSION PROBLEM

  • Khan, F.A.;Alanazi, A.M.;Ali, Javid;Alanazi, Dalal J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.917-933
    • /
    • 2021
  • In this paper, we investigate the behavior and sensitivity analysis of a solution set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem in a real Hilbert space. For this study, we utilize the technique of resolvent operator and the property of a fixed-point set of a multi-valued contractive mapping. We also examine Lipschitz continuity of the solution set with respect to the parameter under some appropriate conditions.

ON SOME CR-SUBMANIFOLDS OF (n-1) CR-DIMENSION IN A COMPLEX PROJECTIVE SAPCE

  • Kwon, Jung-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.85-94
    • /
    • 1998
  • The purpose of this paper is to give sample characterizations of n-dimensional CR-submanifolds of (n-1) CR-semifolds of (n-1) CR-dimension immersed in a complex projective space $CP^{(n+p)/2}$ with Fubini-Study metric and we study an n-dimensional compact, orientable, minimal CR-submanifold of (n-1) CR-dimension in $CP^{(n+p)/2}$.

  • PDF

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.365-384
    • /
    • 2021
  • Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.

ON GENERALIZED NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • Li, Jin-Song;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, we introduce a new generalized nonlinear quasivariational inequality and establish its equivalence with a xed point problem by using the resolvent operator technique. Utilizing this equivalence, we suggest two iterative schemes, prove two existence theorems of solutions for the generalized nonlinear quasivariational inequality involving generalized cocoercive mapping and establish some convergence results of the sequences generated by the algorithms. Our results include several previously known results as special cases.

ON THE EXISTENCE AND BEHAVIOR OF SOLUTIONS FOR PERTURBED NONLINEAR DIFFERENTIAL EQUATIONS

  • Jin Gyo Jeong;Ki Yeon Shin
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.655-664
    • /
    • 1997
  • The existence and behavior of a bounded solution for a perturbed nonlinear differential equation of the type $$ (DE) x'(t) + Ax(t) \ni G(x(t)), t \in [0, \infty) $$ is considered. First, we consider the existence of a bounded solution with more simple assumptions using the concept of "the method of lines". Then we devote to study its behavior using recent results of almost non-expansive curve which is developed by Djafari Rouhani.i Rouhani.

  • PDF

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.