DOI QR코드

DOI QR Code

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua (School of Mathematics and Statistics Wuhan University)
  • Received : 2020.04.02
  • Accepted : 2020.09.15
  • Published : 2021.03.31

Abstract

Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.

Keywords

References

  1. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
  2. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781, vi+122 pp. https://doi.org/10.1090/memo/0781
  3. Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
  4. R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin, 1971.
  5. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. https://doi.org/10.1090/S0002-9904-1977-14325-5
  6. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
  7. D. Cruz-Uribe and L.-A. D. Wang, Variable Hardy spaces, Indiana Univ. Math. J. 63 (2014), no. 2, 447-493. https://doi.org/10.1512/iumj.2014.63.5232
  8. L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
  9. X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), no. 2, 397-417. https://doi.org/10.1016/j.jde.2007.01.008
  10. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
  11. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. https://doi.org/10.1002/cpa.3160140317
  12. J. Liu, F. Weisz, D. Yang, and W. Yuan, Variable anisotropic Hardy spaces and their applications, Taiwanese J. Math. 22 (2018), no. 5, 1173-1216. https://doi.org/10.11650/tjm/171101
  13. J. Liu, D. Yang, and W. Yuan, Anisotropic Hardy-Lorentz spaces and their applications, Sci. China Math. 59 (2016), no. 9, 1669-1720. https://doi.org/10.1007/s11425-016-5157-y
  14. J. Liu, D. Yang, and W. Yuan, Anisotropic variable Hardy-Lorentz spaces and their real interpolation, J. Math. Anal. Appl. 456 (2017), no. 1, 356-393. https://doi.org/10.1016/j.jmaa.2017.07.003
  15. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004
  16. Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123-148. https://doi.org/10.1007/s00020-013-2073-1
  17. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
  18. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta Math. 103 (1960), 25-62. https://doi.org/10.1007/BF02546524
  19. J.-O. Stromberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0091154
  20. J. Tan, Atomic decompositions of localized Hardy spaces with variable exponents and applications, J. Geom. Anal. 29 (2019), no. 1, 799-827. https://doi.org/10.1007/s12220-018-0019-1
  21. L. Tang, Lp(·),λ(·) regularity for fully nonlinear elliptic equations, Nonlinear Anal. 149 (2017), 117-129. https://doi.org/10.1016/j.na.2016.10.016
  22. D. Yang, C. Zhuo, and E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Rev. Mat. Complut. 29 (2016), no. 2, 245-270. https://doi.org/10.1007/s13163-016-0188-z
  23. H. Zhao and J. Zhou, Anisotropic Herz-type Hardy spaces with variable exponent and their applications, Acta Math. Hungar. 156 (2018), no. 2, 309-335. https://doi.org/10.1007/s10474-018-0851-6
  24. C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541-1577. https://doi.org/10.1007/s40840-015-0266-2