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ON GENERALIZED NONLINEAR QUASIVARIATIONAL
INEQUALITIES

Jinsong Li and Shin Min Kang∗

Abstract. In this paper, we introduce a new generalized nonlinear qua-

sivariational inequality and establish its equivalence with a fixed point

problem by using the resolvent operator technique. Utilizing this equiv-
alence, we suggest two iterative schemes, prove two existence theorems

of solutions for the generalized nonlinear quasivariational inequality in-
volving generalized cocoercive mapping and establish some convergence

results of the sequences generated by the algorithms. Our results include

several previously known results as special cases.

1. Introduction

It is well known that variational inequality theory and complementarity
theory play important and fundamental roles in mechanics, elasticity, struc-
tural analysis, economics, optimization, oceanography, management sciences
and other branches of mathematical and engineering sciences. Liu-Kang-Ume
[9] investigated a class of variational inclusions using the resolvent operator
technique for maximal monotone mappings. Many researchers [1,2,5-15] stud-
ied the existence of solutions for several kinds of variational inequalities, qua-
sivariational inequalities and variational inclusions using various fixed point
theorems.

Inspired and motivated by the results in [1,2,5-15], in this paper, we intro-
duce a new class of generalized nonlinear quasivariational inequalities, which
are more general and include the previously known classes of variational in-
equalities and quasivariational inequalities as special cases. We also establish
its equivalence with a class of fixed point problems by using the resolvent
operator technique. Utilizing the equivalence and the Banach fixed-point the-
orem, we develop two iterative algorithms, give two existence and uniqueness
of solution for the generalized nonlinear quasivariational inequality involving
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generalized cocoercive mapping and prove some convergence results of the se-
quences generated by the algorithms. Our results include several previously
known results as special cases.

2. Preliminaries

Let H be a real Hilbert space with a norm ‖ · ‖ and inner product 〈·, ·〉,
respectively, I stand for the identity mapping on H and 2H denote the families
of all nonempty subsets of H. Let g,m,A,B : H → H and N : H×H → H be
mappings. Suppose that W : H → 2H is a maximal monotone mapping. For
any fixed f ∈ H, we consider the following problem:

Find u ∈ H such that

f ∈ N(Au,Bu) +W ((g −m)u), (2.1)

which is known as a generalized nonlinear quasivariational inequality.

Remark 2.1. It is easy to see that the generalized nonlinear quasivariational
inequality (2.1) includes many classes of variational inequalities and quasivari-
ational inequalities, respectively, in [1,2,5-15] as special cases.

Now we recall the following results and concepts.

Definition 2.1. ([3]) Let W : H → 2H be a maximal monotone mapping. The
resolvent operator JWρ associated with W is defined by

JWρ x = (I + ρW )−1x, ∀x ∈ H,
where ρ > 0 is a constant.

It is well known that the resolvent operator JWρ is single-valued and nonex-
pansive.

Definition 2.2. A mapping g : H → H is said to be strongly monotone and
Lipschitz continuous if there exist positive constants r, s satisfying

〈gx− gy, x− y〉 ≥ r‖u− v‖2 and ‖gu− gv‖ ≤ s‖u− v‖, ∀x, y ∈ H,
respectively.

Definition 2.3. Let A : H → H and N : H × H → H be mappings. N is
called:

(1) Lipschitz continuous with respect to the first argument if there exists a
constant s > 0 satisfying

‖N(x, z)−N(y, z)‖ ≤ s‖x− y‖, ∀x, y, z ∈ H;

(2) generalized cocoercive with respect to A in the first argument if there
exist constants c ≥ 0 and d ≥ 0 satisfying

〈N(Ax, z)−N(Ay, z), x− y〉
≥ −c‖N(Ax, z)−N(Ay, z)‖2 + t‖x− y‖2, ∀x, y, z ∈ H.
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In a similar way, we can define the Lipschitz continuity of the mapping N
with respect to the second argument.

The following lemmas play a crucial role in the proof of our main results.

Lemma 2.1. ([4]) Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be nonnegative sequences
satisfying

an+1 ≤ (1− tn)an + bntn + cn, ∀n ≥ 0,

where
∑∞
n=0 tn = ∞, {tn}n≥0 ⊂ [0, 1], limn→∞ bn = 0 and

∑∞
n=0 cn < ∞.

Then limn→∞ an = 0.

Lemma 2.2. Let λ ∈ (0, 1] and ρ be a positive constant. Then the following
statements are equivalent:

(a) the generalized nonlinear quasivariational inequality (2.1) has a solution
u ∈ H;

(b) there exists u ∈ H satisfying

gu = mu+ JWρ [(g −m)u− ρN(Au,Bu) + ρf ],

where JWρ = (I + ρW )−1 is the resolvent operator.

Based on Lemma 2.2 we suggest the following iterative algorithm with error
for the generalized nonlinear quasivariational inequality (2.1).

Algorithm 2.1. Let g,m,A,B : H → H, N : H ×H → H, W : H → 2H and
f ∈ H. Given u0 ∈ H, compute {un}n≥0 by the following iterative scheme:

un+1 = (1− an)un + an{un − (g −m)un

+ JWρ [(g −m)un − ρN(Aun, Bun) + ρf ]}+ rn, n ≥ 0,

where {rn}n≥0 is arbitrary sequence in H introduced to take into account possi-
ble inexact computations and {an}n≥0 is arbitrary sequence in [0, 1] satisfying

∞∑
n=0

‖rn‖ < +∞,
∞∑
n=0

an = +∞.

Algorithm 2.2. Let g,m,A,B, : H → H, N : H ×H → H, W : H → 2H and
f ∈ H. Given u0 ∈ H, compute {un}n≥0 by the following iterative scheme:

un+1 = un − (g −m)un

+ JWρ [(g −m)un − ρN(Aun, Bun) + ρf ], ∀n ≥ 0.

3. Existence and uniqueness of solution
and convergence of algorithms

Now we prove the existence and uniqueness of solution of the generalized
nonlinear quasivariational inequality (2.1) and the convergence of Algorithms
2.1 and 2.2.
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Theorem 3.1. Let g,m,A,B : H → H be Lipschitz continuous with constants
p, q, a and b, respectively, and g − m be strongly monotone with constant r.
Assume that N : H ×H → H is Lipschitz continuous with respect to the first
and second arguments with constants s and t, respectively, and is generalized
cocoercive with respect to A in the first argument constants c and d. Assume
that W : H → 2H is a maximal monotone mapping. If there exists a positive
constant ρ satisfying

θ = 1− 2
√

1− 2r + (p+ q)2 −
√

1− 2ρ(d− cs2a2) + ρ2s2a2 + ρtb ∈ (0, 1),

then the generalized nonlinear quasivariational inequality (2.1) has a unique
solution u ∈ H and the sequence {un}n≥0 defined by Algorithm 2.1 converges
strongly to u.

Proof. Let x, y be arbitrary elements in H and define a mapping G : H → H
by

G(x) = (1− λ)x+ λ{x− (g −m)x

+ JWρ [(g −m)x− ρN(Ax,Bx) + ρf ]}, ∀x ∈ H,
where λ ∈ (0, 1] is a constant. Since g and m are Lipschitz continuous and
g −m is strongly monotone, it follows that

‖x− y − (g −m)x+ (g −m)y‖ ≤ [1− 2r + (p+ q)2]
1
2 ‖x− y‖.

Note that A is Lipschitz continuous with constant a and N is Lipschitz con-
tinuous with respect to the first and second arguments with constants s and t,
respectively, and is generalized cocoercive with respect to A in the first argu-
ment constants c and d. It follows that

‖x− y − ρ[N(Ax,Bx)−N(Ay,Bx)]‖2

= ‖x− y‖2 − 2ρ〈N(Ax,Bx)−N(Ay,Bx), x− y〉
+ ρ2‖N(Ax,Bx)−N(Ay,Bx)‖2

≤ ‖x− y‖2 + 2ρc‖N(Ax,Bx)−N(Ay,Bx)‖2

− 2ρd‖x− y‖2 + ρ2s2a2‖x− y‖2

≤ (1− 2ρ(d− cs2a2) + ρ2s2a2)‖x− y‖2.

It is easy to verify that

‖G(x)−G(y)‖
= ‖(1− λ)x+ λ{x− (g −m)x+ JWρ [(g −m)x− ρN(Ax,Bx) + ρf ]}
− (1− λ)y − λ{y − (g −m)y + JWρ [(g −m)y − ρN(Ay,By) + ρf ]}‖
≤ (1− λ)‖x− y‖+ λ‖x− y − (g −m)x+ (g −m)y‖

+ λ‖JWρ [(g −m)x− ρN(Ax,Bx) + ρf ]

− JWρ [(g −m)y − ρN(Ay,By) + ρf ]‖
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≤ (1− λ)‖x− y‖+ λ‖x− y − (g −m)x+ (g −m)y‖
+ λ‖(g −m)x− (g −m)y − ρ[N(Ax,Bx)−N(Ay,By)]‖
≤ (1− λ)‖x− y‖+ 2λ‖x− y − (g −m)x+ (g −m)y‖

+ λ‖x− y − ρ[N(Ax,Bx)−N(Ay,Bx)]‖
+ λρ‖N(Ay,Bx)−N(Ay,By)‖

≤ {1− λ[1− 2
√

1− 2r + (p+ q)2

−
√

1− 2ρ(d− cs2a2) + ρ2s2a2 + ρtb]}‖x− y‖
= [1− λ(1− θ)]‖x− y‖,

which implies that G is a contraction mapping. Thus G has a unique fixed
point u ∈ H, which is also a unique solution of the generalized nonlinear qua-
sivariational inequality (2.1) by Lemma 2.2.

Now we prove that the iterative sequence {un}n≥0 defined by Algorithm 2.1
converges to u. It is clear that

u = (1− an)u+ an{u− (g −m)u

+ JWρ [(g −m)u− ρN(Au,Bu) + ρf ]}, ∀n ≥ 0.
(3.1)

Using (3.1) and repeating the above arguments, we conclude that

‖un+1 − u‖ ≤ (1− an)‖un − u‖+ anθ‖un − u‖+ ‖rn‖
≤ [1− (1− θ)an]‖un − u‖+ ‖rn‖, ∀n ≥ 0.

(3.2)

It follows from Lemma 2.1 and (3.2) that limn→∞ un = u. This completes
the proof. �

As a consequence of Theorem 2.1, we have

Theorem 3.2. Let g,m,A,B : H → H be Lipschitz continuous with constants
p, q, a and b, respectively, and g − m be strongly monotone with constant r.
Assume that N : H ×H → H is Lipschitz continuous with respect to the first
and second arguments with constants s and t, respectively, and is generalized
cocoercive with respect to A in the first argument constants c and d. Assume
that W : H → 2H is a maximal monotone mapping. If there exists a positive
constant ρ satisfying

θ = 1− 2
√

1− 2r + (p+ q)2 −
√

1− 2ρ(d− cs2a2) + ρ2s2a2 + ρtb ∈ (0, 1),

then the generalized nonlinear quasivariational inequality (2.1) has a unique
solution u ∈ H and the sequence {un}n≥0 defined by Algorithm 2.2 converges
strongly to u.

Remark 3.1. Theorems 3.1-3.2 generalize Theorem 4.1 in [1], Theorems 4.1-
4.3 in [2] and Theorem 3.6 in [15].
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