Comm. Korean Math. Soc. 13 (1998), No. 1, pp. 85-94

ON SOME CR-SUBMANIFOLDS
OF (n—1) CR-DIMENSION
IN A COMPLEX PROJECTIVE SPACE

JUNG-HwaN KwoN

ABSTRACT. The purpose of this paper is to give some characteriza-
tions of n-dimensional C R-submanifolds of (n — 1) CR-dimension im-
mersed in a complex projective space CP("+P)/2 with Fubini-Study
metric and we study an n-dimensional compact, orientable, minimal
CR-submanifold of (n — 1) CR-dimension in CP{(n+7)/2,

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a complex manifold M with complex structure J. If the
maximal J-invariant subspace JT,MNT,M of T, M has constant dimen-
sion for any z in M, then M is called a C R-submanifold and the constant
is called the CR-dimension of M [8]. Now let M be an n-dimensional
C R-submanifold of (n — 1) CR-dimension of M. Then M admidts an
induced almost contact structure [11, 14, 15]. A typical example of an
n-dimensional C R-submanifold of (n — 1) C'R-dimension is a real hyper-
surface. When the ambient manifold M is a complex projective space,
real hypersurfaces are investigated by many authors [2, 7, 9, 10, 15, 16
in connection with the shape operator and the induced almost contact
structure.

Recently, from these results, n-dimensional C R-submanifolds of (n —

1) CR-dimension in a complex projective space CP"%* also have been
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investigated by several authors [3, 6, 11]. Especially, by using the Er-
bacher’s reduction theorem [4], Okumura and Vanhecke [11] proved the
following :

THEOREM A. Let M be a real submanifold of CP™% with maximal
holomorphic subspace of dimension n — 1. If the almost contact metric
structure of M is normal and the normal vector field &, is parallel with
respect to the normal connection, then n~1(M) is locally a product of
My x My where My and Mj belong to some odd-dimensional spheres (m
is the Hopf fibration S™tP+1(1) — CP"*).

The purpose of the present paper is to give another characterization
of CR-submanifolds of (n — 1) CR-dimension immersed in CP*$2 by
using the following integral formula due to Yano (16, 17] :

(11) /M{Rz'c<X,X) + 5 1Lxgl” ~ VX[ - (@ivX)?} <1 =0,

where X is an arbitrary tangent vector field to M, £x the Lie derivative
with respect to X, V the Riemannian connection induced on M, 1 the
volume element of M and ||Y|| the length of a vector field Y with respect
to the Riemannian metric on M.

As an application of the integral formula (1.1), we will prove

THEOREM 1. Let M be an n-dimensional compact, orientable, mini-
mal C' R-submanifold of (n — 1) C'R-dimension in CP*$*. If the normal
vector field £, is parallel with respect to the normal connection, then

(1.2) /M(trAf) x12 (n—1)Vol(M).

In particular, the equality holds good only when w=1(M) is locally a
product of My x My where My and M, belong to some odd-dimensional
spheres.

Next, by using the Green’s theorem for a global function defined on
M (for details, see (3.12)), we will prove
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THEOREM 2. Let M be a 3-dimensional compact, orientable, minimal
C R-submanifold of 2 C R-dimension in CP*¥* . If the normal vector field
&, is parallel with respect to the normal connection and if

Y {tr(A1Aa)Y <4,
a=1

then m=1(M) is locally a product of M| x My where My and Ms belong
to some odd-dimensional spheres.

In section 2 we derive a series of useful formulas for n-dimensional
C R-submanifolds of (n — 1) C'R-dimension in a complex projective space
CP"#* for later use. Finally, in section 3 we will give the complete proof
of the theorems above.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically im-
mersed in a complex space form M “* (c) and denote by (J,g) the Kédhler
structure on M E%F‘E(c) For x of M we denote by T, M and T, M* the
tangent space and normal space of M at z, respectively.

From now on we assume that M is an n-dimensional C R-submanifold
of (n — 1) CR-dimension, that is,

dim(JT, MNT,M)=n—1.

This implies that dimM is odd [3, 11].

Note that the definition of C' R-submanifold of (n — 1) C'R-dimension
meets the definition of C'R-submanifold in the sense of Bejancu [1].

Furthermore, our hypothesis implies that there exists a unit vector
field &; normal to M such that JTM < TM & Span{&1}. Hence, for
any tangent vector field X and for a local orthonormal basis {{,,a =
1,...,p} of normal vectors to M, we have the following decomposition
in tangental and normal components :

(2.1) JX = FX +u'(X)&,
Jga:'_(]a+P§a7 azl,...,p.
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Then it is easily seen that F and P are skew-symmetric endomorphisms

acting on T M and T, M1, respectively. Moreover, the Hermitian prop-
erty of J implies

(2-3) g(FUaaX) = —UI(X)g(fl,Pfa),
(2'4) g(Ua;Uﬁ) = ‘501,3 —E(Pﬁa,P&;).

From g(']Xaga) = -g(Xa Jga)) we get

(2.5) 9(X,Us) = u(X)b1a
and hence
(2.6) g(U1, X)=u!(X), Ua=0, a=2,...,p

Next, applying J to (2.1) and using (2.2) and (2.6) yield
(2.7) F2X = - X +u'(X)U;, w'(X)P& = —u (FX)&,.
Since P is skew-symmetric, (2.3) and the second equation of (2.7) give
(2.8) u(FX)=0, P& =0, FUp=0.
So, (2.2) may be written in the form
(2.9) Jé = ~Uy, Jé=Pla, a=2,....p
and further, we may put
p
PE, = ZPaggg, a=2...,p,
B=2

where (P,3) is a skew-symmetric matrix which satisfies

(2.11) > PagPsy = —b4n.
B
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These results imply that (F,U;,u',g) defines an almost contact metric
structure on (M, g) [15].

Now, let V and V denote the Levi-Civita connection on M and M,
respectively and denote by D the normal connection induced from V in
the normal bundle TM* of M. The Gauss and Weingarten equations
are

(2.12) UxY =VxY +h(X,Y),
(2.13) Vxta=—AcX +Dxéa, a=1,...,p

for any tangent vectors X,Y to M. Here h denotes the second funda-
mental form and A, is the shape operator corresponding to £,. They
are related by

h(X,Y) = g(AaX,Y)éa.

a=1
Furthermore, putting
P
(214) DXga = Zsaﬂ(X)gﬁ’
B=1

it follows that (s4s) is the skew-symmetric matrix of connection forms of
D. Finally, if the ambient space M is of constant holomorphic sectional
curvature 4, the Gauss, Codazzi, Ricci equations and Ricci curvature are
respectively given as follows [3, 11] :
(2.15) R(X,Y)Z =g(Y,2)X - g(X,Z2)Y + g(FY,Z)FX

- g9(FX,Z)FY — 29(FX, Y )FZ

+) 9(AY, 2)AaX =Y g(AaX, Z)ALY,

(2.16) (VxAY — (VyApX
= g(X,U)FY — g(Y,U1)FX - 29(FX,Y)U,

(217) —g-(Rl(X)Y)ga,gl) :g([AlvAa]X7Y)a = 2a-"ap7
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(2.18) Ric(X,Y) =(n+2)g(X,Y) — 3u! (X)ul(Y)
+ 3 (trAda)g(AaX,Y) = Y g(A2X,Y)

for any tangent vector fields X,Y,7 to M. R denotes the Riemann-
ian curvature tensor of M. R* is the curvature tensor of the normal
connection D.

3. Proof of Theorems

In this section, we consider the case of a complex projective space
M = CP™* and VJ = 0. Then by differentiating (2.1) and (2.2)
covariantly and comparing the tangential and normal parts, we have

(3.1) (VyF)X = u'(X)A1Y — g(A1X,Y)Uy,

(3.2) (Vyul)(X) = g(FA1Y, X),

(3.3) VxU; = FA X,

(3.4) 9(AaU1, X) == 515(X)Psa, a=2,...,p
£=2

for any tangent vector fields X,Y to M.
On the other hand, the almost contact metric structure (F,Uy,u!,g)
is said to be normal if the tensor field S defined by

(3.5) S(X,Y) =[FX,FY] - F[FX,Y] - F|X,FY]
+ F?[X, Y] + 2du (X, Y)U;

vanishes identically {11, 18]. By using (2.7), (2.8). (3.1), (3.2) and (3.5),
we can easily prove the following lemma.

LEmMA 3.1 [11]. Let M be an n-dimensional CR-submanifold of
(n — 1) CR-dimension in a complex space form. If the normal vector
fleld &1 is parallel with respect to the normal connection. Then the
following conditions are equivalent to each other :

(1) the induced almost contact metric structure (F,Uy,u!, g) is nor-

mal,
(2) A1F = FA;.
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PROOF OF THEOREM 1. Putting X = Uy in (1.1) gives
. 1 .
(3.6) /M{ch(Ul, U) + 3o, ~ VUL = (dil)?} 1 = 0.

On the other hand, since &; is parallel with respect to the normal
connection D, from (2.14) and (3.4) we have

(3.7) AU =0, a=2,...p

The Ricci equation (2.18), together with (3.7), yields

(3.8) Ric(U1,Ur) = n — 1+ (trA1)g(A1U1,Uz) — g(ATUL, Uy).
From (3.3) it follows that

(3.9) divlUy = tr(F A;) = 0.

We have from (3.3)

(3.10) (Lo, 9)(X,Y) = g(VxU1,Y) + g(Vy Uy, X)
= g((FA, — ALF)X,Y).

And using (2.7) we get
(3.11) IVUL||* = trA? — g(A2U, Uy

Since M is minimal, trA, = 0, @ = 1,...,p. Therefore substituting
(3.8), (3.9) and (3.11) into (3.6), we obtain

/ {%||£Ulg||2 t(n—1)—trA2} £ 1 =0,
M

Thus we have the inequality (1.2). Now we assume that the equality
of (1.2) holds good. Then the hypothesis implies ||Ly,g||? = 0 and
consequently A1 F' = FA; because of (3.10). Combining Theorem A,
Lemma 3.1 and A, F = FA;, we have the required result of Theorem
1. [

From Theorem 1, we have immediately
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COROLLARY 3. Let M be an n-dimensional compact, orientable, min-
imal C' R-submanifold of (n — 1) C R-dimension in CP™%. If the normal
vector field & is parallel with respect to the normal connection and
n—1 2 trA2, then n~Y(M) is locally a product of My x My where M;
and Mz belong to some odd-dimensional spheres.

ProOOF oF THEOREM 2. First of all, we consider the following equa-
tion :

(312) SAIALP = (A4 Ay + |94,

where A denotes the Laplacian operator and ||4;||? = trA2.
Putting

(VxADY = (VxA)Y + (Y, U1)FX + g(FX,Y)U,,
we have [6]
(3.13) IV A2 = [ VAP + 2(n - 1),
Substituting (3.13) into (3.12), we have
1 *
(3.14) SAIALY = (A4 Ar + VAL +2(n - 1).

On the other hand, since ¢; is parallel with respect to the normal con-
nection D, from (2.17) we have

(3.15) 9(A14aX,Y) = g(AA1X,Y), a=2,....p.
From (2.7) and (3.10), we get
(3.16) 1Lv,911* = 2{tr(FA1)? + trAf — g(A}U1,Un)}.

Moreover, since M is minimal, we can easily see that

(3.17) (AA1)A; = (n = 3)trAT + 3(|Lu,gl* — Y _{tr(4144)}°

=l
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with the help of the Ricci identity, (2.8), (2.15), (2.16), (2.18), (3.1),
(3.3), (3.15) and (3.16). Therefore by (3.14) and (3.17) we have

1
5804 I? =(n - 3)trAl + 3| Lu, g1

TL — 1 Z{tr A1 + HVA1H2

a=1

Hence we have

/ (n — 3)trA2 + 3)|Ly, g
M

P

+{2(n—-1) Z (tr(A1AL))?} + IVAL|2) %1 = 0.

By the hypotheses of Theorem 2, we have || Ly, gl|% = 0 and hence A1 F =
FA; because of (3.10). Combining Theorem A, Lemma 3.1 and A F =
F A, we have the required result of Theorem 2. O

REMARK 1. Taking account of A1 F' = F'A;, we can easily see that
the submanifolds M; and Ms in theorem 2 have dimensions 1 and 3,
respectively.

REMARK 2. There does not exist such a submanifold in Theorem 2
with the conditions

n >3 and i{tr(AlAa)}2 <2(n—-1).

a=1
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