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GENERALIZED FRECHET-URYSOHN SPACES

Woo CHORL HonG

ABSTRACT. In this paper, we introduce some new properties of a topo-
logical space which are respectively generalizations of Fréchet-Urysohn
property. We show that countably AP property is a sufficient condition
for a space being countable tightness, sequential, weakly first countable
and symmetrizable to be ACP, Fréchet-Urysohn, first countable and semi-
metrizable, respectively. We also prove that countable compactness is a
sufficient condition for a countably AP space to be countably Fréchet-
Urysohn. We then show that a countably compact space satisfying one
of the properties mentioned here is sequentially compact. And we show
that a countably compact and countably AP space is maximal countably
compact if and only if it is Fréchet-Urysohn. We finally obtain a suffi-
cient condition for the ACP closure operator [-]acp to be a Kuratowski
topological closure operator and related results.

1. Introduction and preliminaries

All spaces are assumed to be Hausdorff. Our terminology is standard and
follows [2] and [5]. Let X be a topological space and let ¢ denote the closure
operator on the space X. Let N denote the set of all natural numbers and
(zn|n € N)(briefly (z,)) a sequence of points of a set. The following functions
[Jseq> []ap, and []acp of the power set P(X) of X to P(X) itself defined by
for each subset A of X,

[A]seq = {z € X : (z) converges to z in X for some sequence (z,,) of points
of A},

[Alap = AU{z € ¢(A) — A: c(F) = F U{z} for some subset F of A}, and

[Alacp = AU{z € ¢(A)— A : ¢(F) = FU{z} for some countable subset F' of
A} are called the sequential closure operator on X [2], the AP closure operator
on X [15], and the ACP closure operator on X, respectively. It is well known
that the sequential closure operator []se, satisfies the Kuratowski topological
closure axioms except for idempotency in general (see [2]). We see easily that
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for each subset A of X,
AC [A]seq - [A]Acp C [A]AP - C(A),

for each countable subset A of X, [A]ap = [A]acp, and [|ap and [|acp do
not satisfy the Kuratowski topological closure axioms in general.

Let us recall some properties and introduce new three properties of a topo-
logical space X.

(1) Fréchet-Urysohn [2] (also called Fréchet [6]) : for each subset A of X,
[Alseq = c(A).

(2) sequential [6] : for each subset A of X which is not closed in X,
[A]seq —A# 0.

(3) countable tightness [1] (also called determined by countable subsets
[10], [12]) : for each subset A C X and each z € c(A), there exists a
countable subset B of A such that z € ¢(B).

(4) countably Fréchet-Urysohn [9] : for each countable subset A of X,
[A]seq = c(A).

(5) AP (standing for Approximation by Points) [15] (also called Whyburn
[11]) : for each subset A of X, [A]ap= c(A).

(6) WAP (standing for Weak Approximation by Points) [15] (also called
weakly Whyburn [11]) : for each subset A of X which is not closed in
X, [Alap — A# 0.

(7) countably AP : for each countable subset A of X, [A]lap = c(A).

(8) ACP (standing for Approximation by Countable Points) : for each
subset A of X, [Alacp= c(4).

(9) WACP (standing for Weak Approximation by Countable Points) : for
each subset A of X which is not closed in X, [AJacp — A# 0.

From definitions and Hausdorflness of X, one easily know that the following
diagram except for x exhibits the general relationships among the properties
mentioned above. No arrows may be reversed as shown by Example below (see
1,2 34,6, 8,9, 10, 11, 15]).

countably Frechet — Urysohn countably AP
Frechet — Urysohn ACP AP

L

sequential ————————> WACP ——> WAP

/

countable tightness

We begin by showing some examples related to the new three properties.

Example 1.1. (1) Let X = {(0,0)} U (N x N). We define a topology 7 on X
by for each (m,n) € X — {(0,0)}, {(m,n)} € 7 and (0,0) € U € 7 if and only
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if for all but a finite number of integers m, the sets {n € N: (m,n) ¢ U} are
each finite. Thus each point (m,n) € X — {(0,0)} is isolated and each open
neighborhood of (0,0) contains all but a finite number of points in each of all
but a finite number of columns(see Arens-Fort space in [14]). Then it is clear
that the space X is Hausdorff and there is a unique non-isolated point (0,0)
in X. In fact, X is normal. Note that any space with a unique non-isolated
point is AP ([15, Proposition 2.1(10)]). It follows that since X countable,
X is ACP and hence countable tightness, WACP, and countably AP. Clearly,
{(0,0)} = ¢(N x N) — (N x N). But, there does not exist a convergent sequence
of points of N x N ([14, p.54, 26(3)]). Thus, X is neither sequential, countably
Fréchet-Urysohn, nor Fréchet-Urysohn.

(2) Let X = {z} UR, where R is the set of all real numbers. We define a
topology 7 on X by foreach z € R, {z} € Tand z e U € Tifand only if R—U
is countable. Clearly, X is Hausdorff and z is a unique non-isolated point in X.
Thus X is AP and hence WAP and countably AP. But, it is neither countable
tightness, sequential, WACP, nor ACP. For, z € ¢(R), but there does not exist
a countable subset C' of R such that z € ¢(C') since every countable subset of
R is closed in X.

(3) Let R be the set of real numbers, 7; the usual topology on R and 7»
the topology of countable complements on R. We define 7 to be the smallest
topology on R generated by 7 U 9. Then a set U is open in the space (R, 7)
if and only if U = O — K where O € 1, and K is a countable subset of R(see
Countable Complement Extension Topology in [14]). Clearly, the space (R, 7)
is Hausdorff and every countable subset of R is closed in (R, 7). It is easy to
check that if every countable subset of a topological space X is closed, then X
is countably AP. Thus (R, 7) is a countably AP space.

We now show that the space R is not AP. Suppose R is AP and let A =
[0,1] — Q, where [0,1] = {z € R: 0 < z < 1} and Q is the set of all rational
numbers. Then since R is AP and 0 € ¢(A) — A, there exists a subset B of
A such that ¢(B) = B U {0}. Since every countable subset of R is closed,
clearly the set B must be uncountable. It follows that for each xz € (0,1 N Q,
x ¢ ¢(B) and hence there are €, > 0 and a countable subset K, of R such that
((z - €z, + €;) — K;) N B = . We then have that

(H(x —€ep,x+€) Ky e (0,1]NQHNB=0.
Clearly,
Wz —emzte)—-K,:xze(0,1]NQ} D A—U{K,:z € (0,1]NQ}
Thus,
(A-—U{K,:z€(0,1]nQ})NnB =0,
and so B C U{K, : z € (0,1] N @} ; that is, an uncountable set B is a subset
of a countable set U{K, : z € (0,1] N Q}, which is a contradiction.

(4) Let X be the set containing of pairwise distinct objects of the following
three types : points z,,, where m,n € N, points y, where n € N and a point
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z. We set Vi(yn) = {yn} U {Zmn : m = k} for each k € N and let vy denote the
set of subsets W of X such that z € W and there exists a positive integer p
such that Vi(y,) — W is finite and y,, € W for all n > p. The collection

H{zmn} :m,n e N} Uy U {Vi(yn) : k,n € N}

is a base for a topology on X. It is clear that the space X with the topology
generated by the base is Hausdorff sequential (2, p.13, Example 13] and hence
WACP and WAP. Let Y = {z,, : m,n € N}. Then, z € ¢(Y). We know that
for each subset F of Y with z € ¢(F), {y, : n € N}NF is infinite. Hence, there
does not exist a subset F' of Y such that ¢(F) = FU{z}, and thus X is neither
AP nor ACP.

(5) The space of ordinals X = [0,w;], where w; is the first uncountable
ordinal, is compact Hausdorff, WAP(see [14, p.70, 43(14)] and [15, Theorem
2.7]), and countably Fréchet-Urysohn ([9, Example (2)]) and hence countably
AP. But, it is neither sequential ([6]) nor AP ([15, Corollary 2.10]).

Here we observe the implication « in the diagram above.
Theorem 1.2. Every WACP space is countable tightness.

Proof. 1t is well-known that a topological space X is countable tightness if and
only if for each non-closed subset A of X, there are x € ¢(A)— A and a sequence
(zn) of points of A such that (z,) accumulates at  (see [12, Proposition 2.2]).
Let X be a WACP space and A a non-closed subset of X. Then since X is
WACP, [A]acp — A # 0, and hence there are z € [A]acp — A and a countable
subset C of A such that ¢(C) = CU{z}. By Hausdorffness of X, we see that C
is countably infinite. Let C'= {z,, : n € N}. Then since z € ¢(C) — C, for each
open set U; in X containing z, C N U, is infinite. It follows that the sequence
(zn) accumulates at 2. Thus we have that there are z € [A]acp—A C ¢(A)—A
and a sequence (z,,) of points of A such that (z,) accumulates at z. Therefore
X is countable tightness. O

In [4, Theorem 2.1], A Bella and I. V. Yaschenko showed that there is a
countable non WAP space. Since every countable space is countable tightness
and every WACP space is WAP, we have that there is a countable tightness
non WACP space and hence the reverse of * is not true in general.

In [3, Proposition 3], A. Bella showed that a countably compact and WAP
space is sequentially compact and in [15, Proposition 2.1(12) and Theorem
2.2], V. V. Tkachuk and 1. V. Yaschenko showed that the space N — N is not
WAP (and hence SN is neither WAP) and a countably compact and AP space
is Fréchet-Urysohn.

In particular, in {7, Theorem 9.6](also in [13, Theorem 1.10] and [8, Theorem
2.2]), the authors showed a well-known and useful theorem that the following
statements are equivalent :

(1) X is semi-metrizable.

(2) X is symmetrizable and first countable.
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(3) X is symmetrizable and Fréchet-Urysohn.

Also, J. E. Vaughan in [16, p.590, 5.3] and S. P. Franklin in [6, Proposition
1.10] proved that a countably compact and sequential space is sequentially
compact. In [2, p.58, Proposition 3], A. V. Arhangel’skii and L. S. Pontryagin
showed that a compact and Fréchet-Urysohn space is sequentially compact.

Recently, in [9, Lemma 2.1], the author showed that in a countably Fréchet-
Urysohn space X, the sequential closure operator []seq on X satisfies the Ku-
ratowski topological closure axioms and the space X endowed with the topol-
ogy induced by []seq is Fréchet-Urysohn. And in [9, Theorem 2.4(1)], he also
showed that a sequentially compact and countably Fréchet-Urysohn space is
Fréchet-Urysohn if and only if it is maximal sequentially compact.

In this paper, we introduce some new properties of a topological space which
are respectively generalizations of Fréchet-Urysohn property. We then give
some examples and investigate the relationships among the properties. We
prove that countably AP property is a sufficient condition for a space being
countable tightness, sequential, weakly first countable and symmetrizable to be
ACP, Fréchet-Urysohn, first countable and semi-metrizable, respectively. We
also prove that countable compactness is a sufficient condition for a countably
AP space to be countably Fréchet-Urysohn. We then show that a countably
compact space satisfying one of the properties mentioned above except for
countable tightness is sequentially compact. And we show that a countably
compact and countably AP space is maximal countably compact if and only if
it is Fréchet-Urysohn. Finally, we show that if a topological space X is count-
ably AP, then the ACP closure operator [|acp on X satisfies the Kuratowski
topological closure axioms and the space X endowed with the topology induced
by []acp is ACP. Moreover, if X is a countably compact and countably AP
space, then the ACP expansion of X obtained above is Fréchet-Urysohn.

2. Results

We now show the relationships among the properties.

Theorem 2.1. (1) Every countably Fréchet-Urysohn and countable tight-
ness space s Fréchet-Urysohn.
(2) Every countably AP and sequential space is Fréchet-Urysohn.
{(3) Every countably AP and countable tighiness space is ACP.
(4) Every WAP and countable tightness space is WACP.

Proof. (1) See [10, Proposition 8.7].

(2) Let X be a countably AP and sequential space, A a subset of X and
xz € c(A). Then since X is sequential and hence countable tightness, there
is a countable subset C' of A such that x € ¢(C). Since X is countably AP
and C is countable, there is a subset F of C such that ¢(F) = FU {z} ; ie,
{z} = ¢(F) — F. Since X is sequential, there exists a sequence (z,) of points
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of F such that (z,) converges to x. Thus z € [Flseq C [Clseq C [Alseq, and so
X is Fréchet-Urysohn.

(3) Let X be a countably AP and countable tightness space, A a subset of
X and z € ¢(A). Then since X is countable tightness, there exists a countable
subset C of A such that z € ¢(C). Since X is countably AP and C is countable,
there exists a subset F' of C such that ¢(F) = F U{z}, and hence z € [A]acp-
Thus ¢(A) = [A]acp, and so X is ACP.

(4) Let X be a WAP and countable tightness space and A a non-closed
subset of X. Then since X is countable tightness, there exist z € c(4) — A
and a sequence (x,) of points of A such that (x,) accumulates at . Clearly,
z € ¢({zn : n € N}). Since X is WAP, there exists a subset F of {z,, : n € N}
such that ¢(F) = F U {z}. Hence we have that there exist z € ¢(4) — A and a
countable subset F' of A such that ¢(F) = F U {z}, and thus X is WACP.

By Theorems 1.2 and 2.1 above, we have immediately the following corollary.

Corollary 2.2. (1) Every WACP and countably AP space is ACP.
(2) Every AP and countable tightness space is ACP.
(3) Ewvery countably AP and countable tightness space is AP.
(4) Ewery countable tightness and countably AP space is WACP.
(5) Buvery countably Fréchet-Urysohn and WACP space is Fréchet-Urysohn.
(6) Every sequential and AP space is Fréchet- Urysohn (see [15, Proposition

2.1(6))).

Note that by Example 1.1(1), we see that every countably AP and countable
tightness space need not be countably Fréchet-Urysohn in general.

Recall that a topological space X is called weakly first countable [7] (also
called g-first countable [13]) if for each x € X, there exists a family {B(z,n) :
n € N} of subsets of X such that the following conditions are satisfied :

(i) z € B(z,n+1) C B(z,n) for all n € N,
(ii) a subset U of X is open if and only if for every x € U there exists an
n € N such that B(z,n) C U.

Such a family {B(z,n) : n € N} is called a weak base at z.

A topological space X is called symmetrizable [7] if there exists a symmetric
(= a metric except for the triangle inequality) d on X satisfying the following
condition : a subset U of X is open if and only if for every x € U there is a
positive real number r such that B(z,r) C U, where B(z,r) denotes the set
{y € X : d(z,y) < r}. A space X is semi-metrizable [7] if and only if there
exists a symmetric d on X such that for each z € X, the family {B(z,r) : r > 0}
forms a (not necessarily open) neighborhood base at z.

By definitions and the first diagram above, we have that the following second
diagram indicates the general nature of these properties above (see [7, 8, 13]).
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semi — metrizable ——————> symmetrizable

first countable ———— weakly first countable

Frechet — Urysohn ————————> sequential

ACP ————— > countable tightness

Theorem 2.3. If a space X satisfies one of the properties in the second column
of the second diagram above and is also countably AP, then it satisfies the
corresponding property in the first column.

Proof. In Theorem 2.1(2) and (3), we have shown that every countable tight-
ness and countably AP space is ACP and every sequential and countably AP
space is Fréchet-Urysohn.

Let X be a weakly first countable and countably AP space. Then since
X is weakly first countable, for each r € X, there is a weak base {B(z,n) :
n € N} at z. To prove this, it is sufficient to show that for each n € N,
B(z,n) is a neighborhood of z in the space X. Suppose on the contrary that
there are # € X and n € N such that = ¢ int(B(z,n)), where int(B(z,n) is
the interior of B(z,n) in X. Then, clearly, z € ¢(X — B(z,n)). Since X is
weakly first countable and countably AP, it is sequential and countably AP.
By Theorem 2.1(2), X is Fréchet-Urysohn and hence AP. It follows that there
exists a subset Y of X — B(z,n) such that ¢(Y) =Y U {z}. Since X —¢(Y) is
open and B{z,n) C (X —c(Y)) U{z}), by (ii) of the definition of weak first
countability, we have that the set (X ~ ¢(Y)) U {z} is open in X containing z
and Y N (X — ¢(Y)) U {z}) = 0, which is a contradiction. Thus we have that
a weakly first countable and countably AP space is first countable.

Finally, by the above result, it follows that every symmetrizable and count-
ably AP space is first countable and hence semi-metrizable. a

From Theorem 2.3, we have immediately the following corollaries and hence
we omit the proofs.

Corollary 2.4. Let X be a sequential space. Then the following statements
are equivalent :

(1) X is Fréchet-Urysohn.

(2) X s ACP.

(3) X is countably AP.

Corollary 2.5. Let X be a weakly first countable space. Then the following
statements are equivalent :
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(1) X s first countable.
(2) X is Fréchet-Urysohn.
(3) X is ACP.

(4) X is countably AP.
Corollary 2.6. Let X be a symmetrizable space. Then the following statements
are equivalent :

(1) X is semi-metrizable.

(2) X is first countable.

(3) X is Fréchet-Urysohn.

(4) X s ACP.

(5) X is countably AP.

We also obtain the result of [7, Theorem 9.6] (also [13, Theorem 1.10] and
[8, Theorem 2.2]) as a corollary.

By Example 1.1(5), we know that a WAP and countably AP space need not
be an AP space. Hence, in Theorem 2.3 above, we cannot replace “ACP—
countable tightness” by “AP— WAP”.

We recall that a topological space X is countably compact if and only if every
countable open cover of X has a finite subcover ; equivalently, every sequence
of points of X has an accumulation point.

We are going to prove that countably compactness is a sufficient condition
for a countably AP to be countably Fréchet-Urysohn.

Theorem 2.7. Every countably compact and countably AP space is countably
Eréchet-Urysohn.

Proof. In [15, Theorem 2.2], V. V. Tkachuk and I. V. Yaschenko showed that
a countably compact and AP space is Fréchet-Urysohn. It can be proved using
the very similar arguments of the proof of [15, Theorem 2.2]. Hence we omit
the proof. O

Remarks 2.8. (1) From Example 1.1(5), we know that a compact and WAP
space need not be sequential in general.

(2) Still there is a very natural question left open: Is every countably com-
pact(or compact) and WACP space sequential?

Recall that a topological space X is sequentially compact if and only if every
sequence of points of X has a convergent subsequence. It is obvious that every
sequentially compact space is countably compact, but the reverse is not true
in general.

Next, we show that a countably compact space satisfying one of the prop-
erties mentioned above except for countable tightness is sequentially compact.

Theorem 2.9. Every countably compact and countably AP space is sequentially
compact.
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Proof. Let X be a countably compact and countably AP space and let (z,)
be a sequence of points of X. Then since X is countably compact, (z,) has
an accumulation point. Let z be an accumulation point of (z,) in X. Clearly,
z € ¢({zn : n € N}), where {2, : n € N} is the range of (z,). By Theorem 2.7,
X is countably Fréchet-Urysohn and hence c({z,, : n € N}) = [{zy, : n € N}]seq-
It follows that there exists a sequence (y,) of points of {z, : n € N} such that
(Yn) converges to x. Set yn = x,(n) for each n € N. Note that (y,) need
not be a subsequence of () in general. We now construct a sequence (z4(n))
as follows : Let ¢(1) = u(1), ¢(2) = the first(least) element of {u(k)|4(1) <
wu(k),k € N} and ¢(3) = the first element of {u(k)|¢(2) < p(k) and p < k},
where p is the number satisfying x4(3) = z,(;) = yp. Assume that for k €
N, ¢(1) < ¢(2) < ¢(38) < --- < ¢(k) have been defined, let ¢k + 1) =
the first element of {u(k)|¢(k) < w(k) and p < k}, where p is the number
satisfying Tgk) = Tup) = Yp- Then we obtain, by Induction, a sequence
(Zg(n)). It is obvious that the sequence (z4(,)) is a subsequence of (z,,) and
also a subsequence of (y,). Since (y,) converges to z, (zn)) converges to .
Hence we have shown that there exists a subsequence (Z4(n)) of (zn) which
converges to x. Thus X is sequentially compact. O

Corollary 2.10. A countably compact space which satisfies one of the proper-
ties mentioned above except for countable tightness is sequentially compact.

Proof. This follows directly from [3, Proposition 3] and Theorem 2.9. O

We obtain immediately the results of [16, p.590, 5.3], [6, Proposition 1.10],
and (2, p.53, Proposition 3] from Corollary 2.10.

Lemma 2.11. ([9, Lemma 2.1}) If (X,7) is a countably Fréchet-Urysohn
space, then the sequential closure operator [|seq on X satisfies the Kuratowski
topological closure operator azioms and (X, THseq) is a Fréchet-Urysohn space,
where T11,,, is the topology for X induced by the closure operator []seq on X.

Note that (X, 7[,,,,) is a Fréchet-Urysohn expansion of a countably Fréchet-
Urysohn space (X, 7).

Lemma 2.12. (1) If (X,7T) and (X, T*) are sequentially compact spaces with
T C T*, then for each sequence (x,) of points of X, (x,) converges to x in
(X,T) if and only if (x,,) converges to x in (X, T*).

(2) Let (X, T) be a countably Fréchet-Urysohn space. Then, (X, T) is count-
ably compact (sequentially compact) if and only if the Fréchet-Urysohn space
(X,1,.,) obtained in Lemma 2.11 is countably compact (resp. sequentially
compact).

Proof. (1) See [9, Lemma 2.3].
(2) Note that a topological space X is countably compact if and only if

every countably infinite subset of X has at least one cluster point. Let F be a
countably infinite subset of X. Since (X, 7) is countably Fréchet-Urysohn and
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F is countable, we have c(F) = [Flseq = c7,,,, (F), where ¢z, (F) denotes
the closure of F" in (X, 7},,,.). By countable compactness of X, F & ¢(F), and
hence FF & 1., (F). Thus (X, Tj,,,,) is countably compact.

Conversely, let F' be a countably infinite subset of X. Since (X,7[,,,) is
countably compact and Fréchet-Urysohn, we have that F' g CTi1,0 (F) and
c(F) = [Flseq = c1;,,,, (F), and hence F G ¢(F). Thus (X,T) is countably
compact.

By Theorem 2.9, for sequential compactness, it is trivial. O

Theorem 2.13. Let (X,T) be a countably compact and countably AP space.
Then, X is mazimal countably compact if and only if X is Fréchet-Urysohn.

Proof. Suppose (X, T) is not Fréchet-Urysohn. Since (X, T) is countably com-
pact and countably AP, (X, 7T} is countably Fréchet-Urysohn by Theorem 2.7.
Hence, by Lemma 2.11, there is the Fréchet-Urysohn expansion (X, 7(;,, ) of
(X, T). Since (X, T) is not Fréchet-Urysohn, it follows clearly 7 G 7}y, But,
by maximal countable compactness and Lemma 2.12(2), 7 = 7. This is a
contradiction.

Conversely, suppose (X, T) is not maximal countably compact. Then since
(X,T) is Fréchet-Urysohn, by Corollary 2.10, (X,7) is not maximal sequen-
tially compact and hence there exists a sequentially compact space (X,7T*)
such that 7 G 7*. Let U € T* — 7. Clearly, X — U is not closed in
(X,T), and so ¢(X —U) — (X —U) # 0, where c is the closure operator
on (X,T). Let p € ¢(X —U) — (X — U). Then since X is Fréchet-Urysohn,
D € [X — Ulseqg = ¢(X — U) and hence there exists a sequence (z,,) of points
of X — U such that (x,) converges to p in (X,7). By Lemma 2.12(1), (z,)
converges to p in (X, 7*). Thus,

pe€er({zn:neN) Cerr (X -U)=X-T,
which is a contradiction. O

Corollary 2.14. ([9, Theorem 2.4(1)]) Let X be a sequentially compact and
countably Fréchet-Urysohn space. Then, X is mazimal sequentially compact if
and only if X is Fréchet-Urysohn.

Proof. This follows immediately from Theorems 2.9 and 2.13. ]

Corollary 2.15. Let X be a countably compact and countably AP space. Then,
X is mazimal countably compact if and only if X is countable tightness.

Proof. This follows from Theorems 2.1(1), 2.7, and 2.13. O

It is easy to check that the ACP closure operator [-]acp on a topological
space X is not a Kuratowski topological closure operator on X in general. We
finally obtain a sufficient condition for {]scp to be a Kuratowski topological
closure operator and related results.
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Theorem 2.16. If (X,7) is a countably AP space, then the ACP closure
operator [Jacp on X satisfies the Kuratowski topological closure azioms and
(X, Ty acp) s an ACP space, where T1y,., is the topology for X induced by
[lacp. Moreover, if (X, T) is a countably compact and countably AP space,
then (X, Tj),cp) s a countably compact and ACP space and hence Fréchet-
Urysohn.

Proof. First, we show that the ACP closure operator []4cp on X satisfies
the Kuratowski topological closure axioms. By the definition of []scp, it is
obvious that [X]acp = X, [0]acp = 0 and for each subsets A and B of X,
[A]AC'P U [B]ACP C [A U B]Acp. Let z € [A U B]ACP~ Then there exists a
countable subset F of AU B such that ¢(F) = FU{z}. Put Fy = AN F and
Fp = BN F. Then since

z € c(F) =c(F4UFp)=c(Fa)Uc(Fp),

z € ¢(Fy) or z € ¢(Fp). Without loss of generality, assume x € ¢(F4). Since
X is countably AP and F, is countable, there exists a subset G of F4 such that
¢(G) = GU {z} and hence z € [A]acp. Thus, for each subsets A and B of X,
[AlacpU[Blacp = [AUB]acp. Hence, it remains to prove that for each subset
Aof X, [Alacp = [[Alacplace. Clearly, [Alacp C [[Alacplace. Conversely,
let € [[A]acplacp- Then there exists a countable subset F' of [A]lacp such
that ¢(F) = F'U {«z}. Since F is countable, F — A is at most countable. Let
F — A ={y, : n € N}. Then for each n € N, since y, € [AJacp — A, there
exists a countable subset A, of A such that ¢(A,,) = Ay, U {yn}. Clearly,
ANF =F —{y, : n € N} and it is countable. So, (AN F) U, ey Ay, I8
a countable subset of A. Since for each n € N, ¢(4,,) = Ay, U {yn} and
Yn € c(Ay,) C (Upen Ay, ) we have that

=ANFAU((F-A) =(ANnF)U{y,:neN}
CANF) U UAyn Cce((ANF)U UAyn

neN neN

and hence z € c(F) C ¢((AN F) U, ey Ay,)- Since X is countably AP and
(ANF)UU, cn Ay, is countable, there exists a subset G of (ANF)UU, ey 4y,
such that ¢(G) = GU{z}, and thus z € [A]scp. Therefore, [|acp satisfies the
Kuratowski topological closure axioms.

Second, we show that (X,7},.,) is an ACP space. Let A be a subset of
X. Then by the definitions, it is obvious [A]Acp_q—[.]ACP C ey, 0p (A), where
Alac P-Tij,op and CT ) op (A) are the ACP closure of A and the closure of A
in (X,7{],¢p), respectively. Hence it is sufficient to show that cz, _(A) C
[A]ACP_THACP' Let z € CTi) o (A). Since CTiy 4 0p (4) = [A]ACP, T e [A]AC'P
and hence there exists a countable subset F of A such that ¢(F) = F U {z}.
Note that in a countably AP space X, for each countable subset F' of X,
C(F) = [F]Acp = [F]AP. Thus [F]Acp =FU {ac}, and so x € [A}ACP_T[_]ACP.
Therefore, (X, 7},.,) is an ACP space.
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Finally we show that (X,7}),.,) is a Fréchet-Urysohn space. It is trivial
that (X, 7[,p) is Hausdorff since (X,7) is Hausdorff and 7 C Tjj,.,- By
[15, Theorem 2.2], we have known that every countably compact and AP (ACP
implies AP) space is Fréchet-Urysohn. Hence, it is sufficient to prove that
(X, 7} 4cp) i8 countably compact. Let C' be a countably infinite subset of X.
We now assert C' G Tl op (C). Since (X,7) is countably compact, clearly
C G ¢(C). Since (X, T) is countably AP and C is countable, we have that

o(C) = [Clap = [Clacr = [Clacr-1),¢, = 1y, (O)-
Thus C G T ,0p (C), and so (X, 7)3,.,) is countably compact. Therefore,
(X, 71,0p) is a Fréchet-Urysohn space. O

Note that if (X,T) is an ACP (Fréchet-Urysohn) space, then 7 = Tjj,.,
(resp. T = T,,.,) ; equivalently, for each subset A of X, ¢(A) = [A]acp (resp.
c(4) = [Alseq)-

Corollary 2.17. If (X,7) is a countably compact and countably AP space,
then the Fréchet-Urysohn expansions (X, Tyy,.,) end (X,7]. of (X,T) are
homeomorphic ; i.e., Ty, = Tj;

Proof. By Lemmas 2.11 and 2.12(2) and Theorem 2.16, (X, 7j),.,) and (X,
T()acp) are countably compact and Fréchet-Urysohn spaces with 7 C 7j,,,
and 7 C Tj,.p- Note that for each subset A of X, cx;  (A4) = [Alseq,
T\ op (A) = [Alacp, and [A];eq C [Alacp. Hence it is sufficient to prove
that for each subset A of X, [AJacp C [Alseq- Let A be a subset of X and
z € [A]acp. Then, by definition of [-]acp, there exists a countable subset C of
A such that {z} = ¢(C)—C. Since (X, T) is countably compact and countably
AP, by Theorem 2.7, it is countably Fréchet-Urysohn. It follows that there
exists a sequence (z,) of points of C' such that (z,) converges to z and so
z € [Clseq. Thus z € [A]seq- a

]AOP)

seq ACP "’
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