This study was to investigate the differences of 'math talks' between concept-based storybook reading and context-based storybook reading activities. The teachers carried out storybook reading activities with their children using either four concept-based storybooks or four context-based storybooks. Fifty-six storybook reading activities from seven kindergarten classrooms were observed. The data were collected through participant observations and audio recordings. The transcriptions of 'math talks' during storybook reading activity were classified in terms of the levels of instructional conversation, types of mathematizing, and the mathematical processes involved. The results indicated that the 'math talks' during the concept-based storybook reading activity were higher than those of the context-based storybook reading activity in terms of both the instructional conversation and in quantifying and redescribing of mathematizing. However, the 'math talks' during the context-based storybook reading activity were higher than those of the concept-based storybook reading activity in connecting and reasoning of the mathematical processes involved. These findings suggest that early childhood teachers need to improve the level of instructional conversation during math storybook reading activities.
이 글에서는 20세기의 문제 해결의 역사에 대하여 개관하고, 21세기에 새로운 경향으로 주목받고 있는 모델링 관점에서의 수학 문제 해결에 대하여 알아보았다. 전통적인 문제 해결에서는 상황과 분리되어 있는 문제의 조건을 수학적 표현으로 바꾸는 번안 기술의 습득을 주요 관심사로 다루었다. 반면에, 모델링 관점에서 문제 해결은 해결할 필요가 있는 현실적인 문제 상황에서 출발하여 수학적인 정리 수단으로 재조직하고, 수학적 상황에서 문제를 해결하여 다시 실제 현상에 적용하는 과정을 따른다. 따라서, 학생들은 문제를 해결해 가는 과정에서 수학화를 경험하게 되고, 수학을 배우게 되는 이점이 있다.
The purpose of this study is to find out what mathematical situation means, how to pose a meaningful situation and how situation-centered teaching could be done. The obtained informations will help learners to improve their math abilities. A survey was done to investigate teachers' perception on teaching-learning in mathematics by elementary teachers. The result showed that students had to find solutions of the textbook problems accurately in the math classes, calculated many problems for the class time and disliked mathematics. We define mathematical situation. It is artificially scene that emphasize the process of learners doing mathematizing from physical world to identical world. When teacher poses and expresses mathematical situation, learners know mathematical concepts through the process of mathematizing in the mathematical situation. Mathematical situation contains many concepts and happens in real life. Learners act with real things or models in the mathematical situation. Mathematical situation can be posed by 5 steps(learners' environment investigation step, mathematical knowledge investigation step, mathematical situation development step, adaption step and reflection step). Situation-centered teaching enhances mathematical connections, arises learners' interest and develops the ability of doing mathematics. Therefore teachers have to reform textbook based on connections of mathematics, other subject and real life, math curriculum, learners' level, learners' experience, learners' interest and so on.
본 연구에서는 나눗셈과 분수의 1차적 개념을 학습한 초등학교 3학년 영재아 3명을 대상으로 소수를 내용으로 하였을 때, 정확한 1차적 개념에 대한 학습과 개념의 연결로 소수에 대한 변형된 1차적 개념과 변형된 스키마를 어떻게 구성하여 소수에 대한 관계적 이해를 하는지에 대해 질적 사례연구를 통하여 알아보았다. 즉, 연구대상자들이 나눗셈과 분수의 1차적 개념을 바탕으로 어떻게 소수에 대한 관계적 이해를 하는지, 그리고 소수의 1차적 개념을 바탕으로 어떠한 변형된 1차적 개념을 형성하여 수직적 수학화를 이루어 나가는지를 심도 있게 조사하였다. 그 결과 정확한 1차적 개념에 대한 학습으로 형성된 변형된 1차적 개념과 그들의 연결로 구성된 스키마와 변형된 스키마가 소수에 대한 관계적 이해와 수직적 수학화에 중요한 요인으로 작용 한다는 것을 알 수 있었다.
Rasmussen, Chris;Zandieh, Michelle;King, Karen;Teppo, Anne
한국수학교육학회지시리즈E:수학교육논문집
/
제18권2호
/
pp.9-33
/
2004
The purpose of this paper is to contribute to the dialogue about the notion of advanced mathematical thinking by offering an alternative characterization for this idea, namely advancing mathematical activity. We use the term advancing (versus advanced) because we emphasize the progression and evolution of students' reasoning in relation to their previous activity. We also use the term activity, rather than thinking. This shift in language reflects our characterization of progression in mathematical thinking as acts of participation in a variety of different socially or culturally situated mathematical practices. We emphasize for these practices the changing nature of student' mathematical activity and frame the process of progression in terms of multiple layers of horizontal and vertical mathematizing.
During the past decades, there has been a fundamental change in the objectives and nature of mathematics education, as well as a shift in research paradigms. The changes in mathematics education emphasize learning mathematics from realistic situations, students' invention or construction solution procedures, and interaction with other students of the teacher. This shifted perspective has many similarities with the theoretical . perspective of Realistic Mathematics Education (RME) developed by Freudental. The RME theory focused the guide reinvention through mathematizing and takes into account students' informal solution strategies and interpretation through experientially real context problems. The heart of this reinvention process involves mathematizing activities in problem situations that are experientially real to students. It is important to note that reinvention in a collective, as well as individual activity, in which whole-class discussions centering on conjecture, explanation, and justification play a crucial role. The overall purpose of this study is to examine the developmental research efforts to adpat the instructional design perspective of RME to the teaching and learning of differential equation is collegiate mathematics education. Informed by the instructional design theory of RME and capitalizes on the potential technology to incorporate qualitative and numerical approaches, this study offers as approach for conceptualizing the learning and teaching of differential equation that is different from the traditional approach. Data were collected through participatory observation in a differential equations course at a university through a fall semester in 2003. All class sessions were video recorded and transcribed for later detailed analysis. Interviews were conducted systematically to probe the students' conceptual understanding and problem solving of differential equations. All the interviews were video recorded. In addition, students' works such as exams, journals and worksheets were collected for supplement the analysis of data from class observation and interview. Informed by the instructional design theory of RME, theoretical perspectives on emerging analyses of student thinking, this paper outlines an approach for conceptualizing inquiry-oriented differential equations that is different from traditional approaches and current reform efforts. One way of the wars in which thus approach complements current reform-oriented approaches 10 differential equations centers on a particular principled approach to mathematization. The findings of this research will provide insights into the role of the mathematics teacher, instructional materials, and technology, which will provide mathematics educators and instructional designers with new ways of thinking about their educational practice and new ways to foster students' mathematical justifications and ultimately improvement of educational practice in mathematics classes.
One of the main features of the 7th revised national curriculum is the implementation of a 'Differentiated Curriculum'. Differentiated Curriculum is often interpreted as meaning the same as 'tracking' or 'ability grouping' in western countries. In the 7th revised curriculum, mathematics is organized and implemented by 'Level-Based Differentiated Curriculum'. To develop mathematics textbooks and teaching-and-learning materials for Differentiated Curriculum, the ideas of 'Enriched and Supplemental Differentiated Curriculum'need to be applied, that is, to provide advanced contents for fast learners, and plain contents for slow learners. Level Based Differentiated Curriculum could be implemented by ability grouping either between classes or within classes. According to these two exemplary models, the implementation models for supplemental course and enriched course are determined. The contents for supplemental course are comprised of minimal essential elements selected from the standard course at a decreased level of complexity and abstraction. The contents of enriched courses are focused on various applications of mathematical knowledge in the real world. Special remedy course will be offered to extremely underachieved students, The principles of developing teaching-and-learning material for special remedy course were obtained from the histo-genetic principle, progressive mathematizing principle, and constructivism.
Mathematics is means for making sense of one's experiential world and products of human activities. A usefulness of mathematics is derived from this features of mathematics. Keeping the meaning of situations during the mathematizing of situations. However, theories about the development of mathematical concepts have turned mainly to an understanding of invariants. The purpose of this study is to show the possibility of computer in representing situation and phenomena. First, we consider situated cognition theory for looking for the relation between various representation and situation in problem. The mathematical concepts or model involves situations, invariants, representations. Thus, we should involve the meaning of situations and translations among various representations in the process of mathematization. Second, we show how the process of computational mathematization can serve as window on relating situations and representations, among various representations. When using computer software such as ALGEBRA ANIMATION in mathematics classrooms, we identified two benifits First, computer software can reduce the cognitive burden for understanding the translation among various mathematical representations. Further, computer softwares is able to connect mathematical representations and concepts to directly situations or phenomena. We propose the case study for the effect of computer software on practical mathematics classrooms.
수학적 맥락 정보를 이용한 문제가 주어졌을 때, 학생들의 문제 해결 활동을 관찰하고 인지적 측면과 정서적 측면에서 분석하였다. 수학적 맥락 문제들은 Freudenthal의 수학 교육 이론과 RME에 따라 구성하였다. 그 결과, 개방된 형태의 맥락 문제가 보다 다양한 풀이를 산출해냄을 알 수 있었다. 따라서 교사는 스스로 형식적 수학을 재발명하고, 학생들로 하여금 그에 걸맞은 인지적 활동이 이루어지도록 나름대로의 교수 학습 방법을 개발하여야 한다.
본 연구의 목적은 프로이덴탈의 수학화 교수 학습론을 토대로 현행 고등학교 미적분 교수 학습의 문제점을 해결하기 위한 대안을 탐색하는 데 있다. 이러한 연구의 목적을 달성하기 위해 프로이덴탈의 수학화 이론과 딘즈의 개념학습의 다양성 이론의 변증법적 통합을 시도하고 이를 토대로 수학 II 미분 영역의 교과서 분석을 통해 문제점을 도출한 후, 수정된 수학화 과정에 충실한 미분계수 개념의 수학화 적분 교수 학습 자료를 개발하였다. 개발된 자료의 특징은 미분계수 개념의 역사적 근원문제인 접선문제와 속도문제를 다양한 표현도구를 이용하여 해결하는 과정에서 접선개념과 속도개념을 수학화 한 후에 미분계수 개념을 수학화하는 데 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.