• Title/Summary/Keyword: mathematical intuition

Search Result 70, Processing Time 0.02 seconds

A Study on the Nature of the Mathematical Reasoning (수학적 추론의 본질에 관한 연구)

  • Seo, Dong-Yeop
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • The aims of our study are to investigate the nature of mathematical reasoning and the teaching of mathematical reasoning in school mathematics. We analysed the process of shaping deduction in ancient Greek based on Netz's study, and discussed on the comparison between his study and Freudenthal's local organization. The result of our analysis shows that mathematical reasoning in elementary school has to be based on children's natural language and their intuitions, and then the mathematical necessity has to be formed. And we discussed on the sequences and implications of teaching of the sum of interior angles of polygon composed the discovery by induction, justification by intuition and logical reasoning, and generalization toward polygons.

  • PDF

A Study on the Visual Representation in Mathematics Education (수학교육에서 시각적 표현에 관한 소고)

  • 이대현
    • The Mathematical Education
    • /
    • v.42 no.5
    • /
    • pp.637-646
    • /
    • 2003
  • Visual representation is very important topic in Mathematics Education since it fosters understanding of Mathematical concepts, principles and rules and helps to solve the problem. So, the purpose of this paper is to analyze and clarify the various meaning and roles about the visual representation. For this purpose, I examine the status of the visual representation. Since the visual representation has the roles of creatively mathematical activity, we emphasize the using of the visual representation in teaching and learning. Next, I examine the errors in relation to the visual representation which come from limitation of the visual representation. It suggests that students have to know conceptual meaning of the visual representation when they use the visual representation. Finally, I suggest some examples of problem solving via the visual representation. This examples clarify that the visual representation gives the clues and solution of problem solving. Students can apprehend intuitively and easily the mathematical concepts, principles and rules using the visual representation because of its properties of finiteness and concreteness. So, mathematics teachers create the various visual representations and show students them. Moreover, mathematics teachers ask students to design the visual representation and teach students to understand the conceptual meaning of the visual representation.

  • PDF

Problems and Improvements of Teaching the concept of Pyramid in Elementary Mathematics Textbook (초등학교 수학교과서 '각뿔' 지도 방식에 대한 분석과 개선 방안)

  • Lee, Dong Hwan
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • The purpose of this study is to examine the way of teaching the concept of pyramid in the elementary mathematics textbook and try to improve the problem. Although textbook present the general definition of pyramid as including regular pyramid, right pyramid, oblique pyramid, the textbook intentionally deal with right pyramid or regular pyramid. This intention reflect the intuition or familiarity of students. But, according to the analysis, this intention do not realized. The example of pyramid presented in the textbook do not coincide with mathematical definition and intuition of students. If we intend to deal with right pyramid in the textbook, we should treat of regular pyramid and right pyramid whose base is a rectangular in the textbook.

  • PDF

A Study on Game Content Development Methodology for Mathematics Learning to Raise Mathematical Intuition: for Elementary Geometry Learning (수학적 직관을 키우는 게임 콘텐츠 개발 방법 연구 : 초등 기하 영역을 중심으로)

  • Kim, Yoseob;Woo, Tack;Joo, Heeyoung
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.95-110
    • /
    • 2013
  • Current up-to-date courses of study put emphasis on raising creative students. However, the cramming methods of teaching mathematics in the school seems far from the creativity and the number of students who feels mathematics difficult is increasing. To overcome this situation, the government proposed 'the mathematics education using storytelling', which leads to lots of developments of mathematics using serious game in many areas. However most of the current serious games couldn't do away with the deductive framework of mathematics, which makes it impossible to achieve the purpose of raising creative students. This is because existing mathematics serious games have not deeply contemplated many aspects such as the purpose and theories of teaching and teaching mathematics. Therefore, in order to overcome the limitations of cramming methods in existing mathematics educations, this research proposes the new method of developing serious game contents for elementary geometry that is useful to improve mathematical intuition, based on RME, the theory of teaching/learning mathematics.

Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami- (중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로)

  • Seo, Ji Hee;Yeun, Jong Kook;Lee, Kwang Ho
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.785-799
    • /
    • 2013
  • The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.

  • PDF

A Note on Teaching of Proof in Middle School Mathematics (중학교 수학에서 증명지도에 관한 연구)

  • 김흥기
    • The Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.55-72
    • /
    • 1998
  • We prove many statements in middle and high school mathematics, so it is necessary to have some method for understanding the modes of proof. But it is hard to discuss about the modes of proof without knowing logics. Venn-diagrams can be used in a great variety of situations, and it is useful to the students unfamiliar with logical procedure. Since knowing a mode of proof that could be used may still not guarantee success of proof, it is also necessary to illustrate many cases of proof strategies. To achieve the above reguirements, (1)Even though intuition, the modes of proof used in middle school mathematics should be understood by using venn-diagrams and the students can use the right proof in the right statement. (2)We must illustrate many kinds of proof so that the students can get the proof stratigies from these illustrations. (3)If possible, logic should be treated in middle school mathematics for students to understand the system of proof correctly.

  • PDF

Independence in probability, The conflicts between its intuitive concept and formal definition (확률 영역에서의 독립성, 그 직관적 개념과 형식적 정의의 갈등)

  • Cho, Cha-Mi;Park, Jong-Youll
    • The Mathematical Education
    • /
    • v.47 no.3
    • /
    • pp.373-386
    • /
    • 2008
  • In highschool probability education, this study analyzed conflicts between intuitive concept and formal definition which originates from the process of establishing the concept of statistical independence. In judging independence, completely different types of problems requiring their own approach was analyzed by dividing them into two types. By doing so, this study researched a way to view independence as an overall idea. That is purposed to suggest a solution to a conflicts between intuitive concept and formal definition and to help not to judge independence out of wrong intuition. This study also suggests that calculation process which leads to precise perception of sample space and event be provided when we prove independence by expressing events with assembly symbols.

  • PDF

A Study on the Pattern Noise Prediction of Automobile Tire (자동차 타이어 패턴소음 예측에 관한 연구)

  • Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.68-73
    • /
    • 2005
  • Tire manufactures have dealt with noise problem by varying the pitch of the tread. The various formulas for the variations are generally determined differently, however. Often these variations are based on a combination of trial and error, intuition, and economics. Some manufactures have models and analogs to test tread patterns and their variations. These efforts, however practical, do not determine the best variation beforehand or guarantee the best results. For this reason it was felt that a general mathematical approach fur determining the best variation was needed. Moreover, the method should be completely general, easy to use, and sufficiently accurate. This paper discusses a mathematical method called Mechanical Frequency Modulation(MFM) which meets the above requirements. Thus, MFM pertains to computing an irregular time sequence of events so that the resulting excitation spectrum is shaped to a preferred form. The first part of this paper treats the theoretical basis for computing an optimum variation ; the second part discusses experimental results and simulation program which corroborate the theory.

A Comparison of Mathematically Gifted and Non-gifted Elementary Fifth Grade Students Based on Probability Judgments (초등학교 5학년 수학영재와 일반아의 확률판단 비교)

  • Choi, Byoung-Hoon;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-199
    • /
    • 2007
  • The purpose of this study was to discover differences between mathematically gifted students (MGS) and non-gifted students (NGS) when making probability judgments. For this purpose, the following research questions were selected: 1. How do MGS differ from NGS when making probability judgments(answer correctness, answer confidence)? 2. When tackling probability problems, what effect do differences in probability judgment factors have? To solve these research questions, this study employed a survey and interview type investigation. A probability test program was developed to investigate the first research question, and the second research question was addressed by interviews regarding the Program. Analysis of collected data revealed the following results. First, both MGS and NGS justified their answers using six probability judgment factors: mathematical knowledge, use of logical reasoning, experience, phenomenon of chance, intuition, and problem understanding ability. Second, MGS produced more correct answers than NGS, and MGS also had higher confidence that answers were right. Third, in case of MGS, mathematical knowledge and logical reasoning usage were the main factors of probability judgment, but the main factors for NGS were use of logical reasoning, phenomenon of chance and intuition. From findings the following conclusions were obtained. First, MGS employ different factors from NGS when making probability judgments. This suggests that MGS may be more intellectual than NGS, because MGS could easily adopt probability subject matter, something not learnt until later in school, into their mathematical schemata. Second, probability learning could be taught earlier than the current elementary curriculum requires. Lastly, NGS need reassurance from educators that they can understand and accumulate mathematical reasoning.

  • PDF

A study on the proof of additive law of sine function using technology - A case study focused on mathematics education for the gifted - (테크놀로지를 활용한 사인함수의 덧셈정리 증명 - 수학영재아를 중심으로 한 사례연구 -)

  • Lee, Heon-Soo;Park, Jong-Youll;Jung, In-Chul
    • The Mathematical Education
    • /
    • v.48 no.4
    • /
    • pp.387-398
    • /
    • 2009
  • In this paper, we investigated the influence of technology, which gave an impact on students through the process of teaching & learning for the proof of an additive law of sine function in the mathematics education for the gifted. We chose students who were taking a course in enrichment mathematics at Science Education Institute for the Gifted in Mokpo National University, and analyzed their processes of a mathematical inference or conjecture, an algebraic description and a proof by visualization using technology. We found the following facts. That is, the visualization using technology is helpful to the gifted students in understanding principles and concepts of mathematics by intuition. Also, it is helpful to ones verifying various cases and generalizing principles. But, using technology can be a factor that disturbs learning of students who are clumsy with operating technology.

  • PDF