• Title/Summary/Keyword: low-voltage swing

Search Result 117, Processing Time 0.027 seconds

Characteristics of AlGaAs/GaAs Quantum-Well Delta-Doped Channel FET's by Low Pressure Metalorganic Chemical Vapor Deposition (저압 유기금속기상 성장법에 의한 AlGaAs/GaAs 양자 우물에 델타 도우핑된 채널 FET 특성)

  • 장경식;정동호;이정수;정윤하
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.33-37
    • /
    • 1992
  • AlGaAs/GaAs quantum well delta-doped channel FET's have been successfully fabricated using by low-pressure metalorganic chemical vapor deposition(LP-MOCVD). The FET's with a gate dimension of 1.8$\mu$m $\times$ 100$\mu$m have a maximum transconductance of 190 mS/mm and a maximum current density of 425 mA/nm. The devices show extremely broad transconductances with a large voltage swing of 2.4V. The S-parameter measurements have indicated that the current gain and power gain cutoff frequencies of the device were 7 and 15 GHz, respectively. These values are among the best performance reported for GaAs based heterojunction FET's with a similar device geometry.

  • PDF

A single-clock-driven gate driver using p-type, low-temperature polycrystalline silicon thin-film transistors

  • Kim, Kang-Nam;Kang, Jin-Seong;Ahn, Sung-Jin;Lee, Jae-Sic;Lee, Dong-Hoon;Kim, Chi-Woo;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • A single-clock-driven shift register and a two-stage buffer are proposed, using p-type, low-temperature polycrystalline silicon thin-film transistors. To eliminate the clock skew problems and to reduce the burden of the interface, only one clock signal was adopted to the shift register circuit, without additional reference voltages. A two-stage, p-type buffer was proposed to drive the gate line load and shows a full-swing output without threshold voltage loss. The shift register and buffer were designed for the 3.31" WVGA ($800{\times}480$) LCD panel, and the fabricated circuits were verified via simulations and measurements.

Start-up circuit with wide supply swing voltage range and modified power-up characteristic for bandgap reference voltage generator. (넓은 전압 범위와 개선된 파워-업 특성을 가지는 밴드갭 기준전압 발생기의 스타트-업 회로)

  • Sung, Kwang-Young;Kim, Jong-Hee;Kim, Tae-Ho;Vu, Cao Tuan;Lee, Jae-Hyung;Lim, Gyu-Ho;Park, Mu-Hum;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1544-1551
    • /
    • 2007
  • A start-up circuit of the bandgap reference voltage generator of cascode current mirror type with wide operating voltage range and enhanced power-up characteristics is proposed in the paper. It is confirmed by simulation that the newly proposed start-up circuit does not affect the operation of the bandgap reference voltage generatory even though the supply voltage(VDDA) is higher and has more stable power-up characteristic than the conventional start-up circuit. Test chips are designed and fabricated with $0.18{\mu}m$ tripple well CMOS process and their test has been completed. The mean value of measured the reference voltage(Vref) is 738mV and The three sigma value($3{\sigma}$) is 29.88mV.

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

Novel properties of erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Shin, Jae-Heon;Lee, Seong-Jae;Park, Kyoung-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • silicided 50-nm-gate-length n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors (SB-MOSFETs) with 5 nm gate oxide thickness are manufactured. The saturation current is $120{\mu}A/{\mu}m$ and on/off-current ratio is higher than $10^5$ with low leakage current less than $10{\mu}A/{\mu}m$. Novel phenomena of this device are discussed. The increase of tunneling current with the increase of drain voltage is explained using drain induced Schottky barrier thickness thinning effect. The abnormal increase of drain current with the decrease of gate voltage is explained by hole carrier injection from drain into channel. The mechanism of threshold voltage increase in SB-MOSFETs is discussed. Based on the extracted model parameters, the performance of 10-nm-gate-length SB-MOSFETs is predicted. The results show that the subthreshold swing value can be lower than 60 mV/decade.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송 접속 경로의 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.761-764
    • /
    • 2007
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and πace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects.

  • PDF

Design of the low noise CMOS LDO regulator for a low power capacitivesensor interface (저전력 용량성 센서 인터페이스를 위한 저잡음 CMOS LDO 레귤레이터 설계)

  • Kwon, Bo-Min;Jung, Jin-Woo;Kim, Ji-Man;Park, Yong-Su;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This paper presents a low noise CMOS regulator for a low power capacitive sensor interface in a $0.5{\mu}m$ CMOS standard technology. Proposed LDO regulator circuit consist of a voltage reference block, an error amplifier and a new buffer between error amplifier and pass transistor for a good output stability. Conventional source follower buffer structure is simple, but has a narrow output swing and a low S/N ratio. In this paper, we use a 2-stage wide band OTA instead of source follower structure for a buffer. From SPICE simulation results, we got 0.8 % line regulation and 0.18 % load regulation.

A Low Power Current-Mode 12-bit ADC using 4-bit ADC in cascade structure (4비트 ADC 반복구조를 이용한 저전력 전류모드 12비트 ADC)

  • Park, So-Youn;Kim, Hyung-Min;Lee, Daniel-Juhun;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1145-1152
    • /
    • 2019
  • In this paper, a low power current mode 12-bit ADC(: Analog to Digital Converter) is proposed to mix digital circuits and analog circuits with the advantages of low power consumption and high speed operation. The proposed 12 bit ADC is implemented by using 4-bit ADC in a cascade structure, so its power consumption can be reduced, and the chip area can be reduced by using a conversion current mirror circuit. The proposed 12-bit ADC is SK Hynix 350nm process, and post-layout simulation is performed using Cadence MMSIM. It operates at a supply voltage of 3.3V and the area of the proposed circuit is 318㎛ x 514㎛. In addition, the ADC shows the possibility of operating with low power consumption of 3.4mW average power consumption in this paper.