• Title/Summary/Keyword: locally identity

Search Result 24, Processing Time 0.023 seconds

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

The Uniform Convergence of a Sequence ofWeighted Bounded Exponentially Convex Functions on Foundation Semigroups

  • Ali, Hoda A.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.337-343
    • /
    • 2006
  • In the present paper we shall prove that on a foundation *-semigroup S with an identity and with a locally bounded Borel measurable weight function ${\omega}$, the pointwise convergence and the uniform convergence of a sequence of ${\omega}$-bounded exponentially convex functions on S which are also continuous at the identity are equivalent.

  • PDF

LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

  • Kim, Mee-Kyoung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.261-264
    • /
    • 1994
  • Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By dim(R) we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be(omitted)

  • PDF

A Hybrid Nonsmooth Nonnegative Matrix Factorization for face representation (다양한 얼굴 표현을 위한 하이브리드 nsNMF 방법)

  • Lee, Sung-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.957-958
    • /
    • 2008
  • The human facial appearances vary globally and locally according to identity, pose, illumination, and expression variations. In this paper, we propose a hybrid-nonsmooth nonnegative matrix factorization (hybrid-nsNMF) based appearance model to represent various facial appearances which vary globally and locally. Instead of using single smooth matrix in nsNMF, we used two different smooth matrixes and combine them to extract global and local basis at the same time.

  • PDF

REDUCED PROPERTY OVER IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.483-492
    • /
    • 2021
  • This article concerns the property that for any element a in a ring, if a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic ≠2 and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field {0, 1}. A method to construct reduced-over-idempotent fields is also provided.

THE DETERMINANT MAP FROM THE AUTOMORPHISM GROUP OF A PROJECTIVE R-MODULE TO THE UNIT GROUP OF R

  • Lee, Sang Cheol;Kim, Sang-hee
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • Let P be a finitely generated projective module over a commutative ring R with identity. If P has finite rank, then it will be shown that the map ${\varphi}:Aut_R(P){\rightarrow}U(R)$ defined by ${\varphi}({\alpha})={\det}({\alpha})$ is locally surjective and $Ker({\varphi})=SL_R(P)$.

A Study of Service Quality and Identity on Professional Sports for Promoting Licensing Product Intentions (라이센스 제품의 구매 촉진을 위한 프로 스포츠 서비스 품질과 동일시에 관한 연구)

  • Park, Bae Jin;Park, Sun Young
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.3
    • /
    • pp.189-197
    • /
    • 2016
  • This study is aimed at providing basic data necessary for promoting consumption of professional sports licensing in the industry through service quality. Specifically, the current study examines the effects of service quality and licensing product intentions on professional sports and evaluates the moderating identity. For this study, we distributed a total of 480 questionnaires to those sampled through non-probability sampling from people living in small and medium cities including Seoul. Collected data were coded and entered into the computer, and statistically processed using SPSS Statistics 18 The results were as follow: First, service quality of professional sports significantly effect on licensing product intentions, but identity could not effect on licensing product intentions. Second, Identity as a moderating variable has significantly positive effect on the relationship between star player of service quality and Licensing Product Intentions. In conclusion, the companies that participate as title sponsors in professional sports were proven to promotion their licensing product intentions, as identified with sports fans through service quality of professional sports such as record, attractiveness, star player and locally affiliated.

  • PDF

ONE-PARAMETER GROUPS OF BOEHMIANS

  • Nemzer, Dennis
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.419-428
    • /
    • 2007
  • The space of periodic Boehmians with $\Delta$-convergence is a complete topological algebra which is not locally convex. A family of Boehmians $\{T_\lambda\}$ such that $T_0$ is the identity and $T_{\lambda_1+\lambda_2}=T_\lambda_1*T_\lambda_2$ for all real numbers $\lambda_1$ and $\lambda_2$ is called a one-parameter group of Boehmians. We show that if $\{T_\lambda\}$ is strongly continuous at zero, then $\{T_\lambda\}$ has an exponential representation. We also obtain some results concerning the infinitesimal generator for $\{T_\lambda\}$.

AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

  • Choi, Seul-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut{non}(L)=Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups $Aut_{non}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ and $Aut_{non-Lie}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the F-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.