Acknowledgement
The authors sincerely thank the referee for valuable comments. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1C1B1008085).
References
- J. T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canadian J. Math., 21(1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
- M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra, 26(1998), 1017-1039. https://doi.org/10.1080/00927879808826181
- R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure Appl. Math., vol. 90, Queen's University, Kingston, Ontario, 1992.
- A. Hamed, S-Noetherian spectrum condition, Comm. Algebra, 46(2018), 3314-3321. https://doi.org/10.1080/00927872.2017.1412455
- W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc., 158(1971), 273-284. https://doi.org/10.1090/S0002-9947-1971-0280472-2
- B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra, 123(1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
- J. W. Lim, A note on S-Noetherian domains, Kyungpook Math. J., 55(2015), 507-514. https://doi.org/10.5666/KMJ.2015.55.3.507
- M. Nagata, Local Rings, Interscience Tracts in Pure and Appl. Math., No. 13, Interscience Publishers, a division of John Wiley & Sons, New York and London, 1962.
- J. Ohm and R. L. Pendleton, Rings with Noetherian spectrum, Duke Math. J., 35(1968), 631-639. https://doi.org/10.1215/S0012-7094-68-03565-5
- N. Vaughan and R. W. Yeagy, Factoring ideals into semiprime ideals, Canadian J. Math., 30(1978), 1313-1318. https://doi.org/10.4153/CJM-1978-108-5