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THE DETERMINANT MAP FROM THE

AUTOMORPHISM GROUP OF A PROJECTIVE

R-MODULE TO THE UNIT GROUP OF R

Sang Cheol Lee and Sang-hee Kim∗

Abstract. Let P be a finitely generated projective module over
a commutative ring R with identity. If P has finite rank, then
it will be shown that the map ϕ : AutR(P ) → U(R) defined by
ϕ(α) = det(α) is locally surjective and Ker(ϕ) = SLR(P ).

1. Introduction

Throughout this paper every ring R will be a commutative ring with
identity and every module will be a finitely generated unitary R-module.

In section 2, we deal with properties of endomorphism rings of free
modules which will be used later.

In section 3, if L is a projective R-module of rank 1, then we prove
that EndR(L) = R. Let P be a projective R-module with rank n <∞.
Then det(P ) = ∧nP has rank 1 so that EndR(det(P )) = R. Hence
since α ∈ AutR(P ) if and only if det(α) = ∧nα ∈ AutR(det(P )) =
U(EndR(det(P ))), we have

AutR(P ) = U(EndR(P )) = {α ∈ EndR(P ) | det(α) ∈ U(R)}.

If P is a projective R-module with finite rank, then we show in Theo-
rem 3.5 that the map ϕ : AutR(P )→ U(R) defined by ϕ(α) = det(α) is
locally surjective and Ker(ϕ) = SLR(P ).

The study of this paper was motivated from the papers of [1] - [7].
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2. Endomorphism Rings of Free Modules

In this section, we deal with the exterior powers of free modules.
For a given free module, we will discuss how the wedge product of its
endomorphism, the determinant of its endomorphism, and the adjoint
of its endomorphism are related. The results in this section will be used
in the following sections.

Lemma 2.1. Let R be a ring and let F be a free R-module of rank
n. The r-th exterior power ∧rF of F is a free R-module of rank nCr.

Proof. Let F be a free R-module with a basis x1, · · · , xn. Then F =
⊕ni=1Rxi. So, ∧rF = ⊕1≤i1<i2···<ir≤nRxi1 ∧Rxi2 ∧ · · · ∧Rxir and hence
∧rF has an R-free basis {xi1∧xi2∧· · ·∧xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}.
Hence rank(∧rF ) = nCr.

Let A ∈Matm×n(R). Define a map LA : Rn → Rm by LA(x) = Ax,
where x ∈ Rn. Then LA is an R-homomorphism. This is called the left
multiplication by A. In Rn, let

e1 =


1
0
...
0

 , · · · , en =


0
0
...
1


Then {e1, · · · , en} is an R-free basis for the R-free module Rn. Define
a map Φ : EndR(Rn) → Matn×n(R) by Φ(σ) = [σ]{e1, ··· , en}, where
σ ∈ EndR(Rn). Then Φ is an R-isomorphism. For α ∈ EndR(Rn), we
define the determinant, denoted by det (α), of α to be the determinant
of the matrix [α]{e1, ··· , en}. Also, we define the adjoint, adj (α), of α to

be Φ−1(adj([α]{e1, ··· , en})). We define a map ∧nα : ∧nRn → ∧nRn by

(∧nα)(p1 ∧ · · · ∧ pn) = α(p1) ∧ α(p2) ∧ · · · ∧ α(pn),

where p1, · · · , pn ∈ Rn. Then it is easy to prove that ∧nα ∈ EndR(∧nRn).

Lemma 2.2. Let R be a ring. Let F be an R-free module of rank 1.
If we define a map Φ : R → EndR(F ) by Φ(r) = the left multiplication
by r, where r ∈ R, then Φ is an R-isomorphism.

Corollary 2.3. For every ring R, EndR(∧nRn) ∼= R.

Proof. ∧nRn is a rank 1 R-free module with an R-free basis {e1 ∧
· · · ∧ en}. Hence the result follows from Lemma 2.2.
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We will identify each element r ∈ R with the left multiplication by
r, so that we may identify R with EndR(∧nRn).

Lemma 2.4. Let R be a ring. Then the following statements are
true.

1. For every α ∈ EndR(Rn), ∧nα = det(α).
2. For every α, β ∈ EndR(Rn),

(∧nα) ◦ (∧nβ) = det(α) det(β) = det(α ◦ β) = ∧n(α ◦ β).

Proof. (1) Consider the standard ordered R-free basis {e1, · · · , en}
for Rn and write

[α]{e1,e2,··· ,en} =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .
Then

∧nα(e1 ∧ e2 ∧ · · · ∧ en) = α (e1) ∧ α (e2) ∧ · · · ∧ α (en)

= (a11e1 + a21e2 + · · ·+ an1en)

∧(a12e1 + a22e2 + · · ·+ an2en)

∧ · · · · · ·
∧(a1ne1 + a2ne2 + · · ·+ annen)

= det ([α]{e1, e2, ··· , en})(e1 ∧ e2 ∧ · · · ∧ en)

= det(α)(e1 ∧ e2 ∧ · · · ∧ en).

By the proof of Lemma 2.1, {e1 ∧ e2 ∧ · · · ∧ en} is an R-free basis for the
rank 1 free R-module ∧n(Rn). Hence ∧nα is the left multiplication by
det(α), so that ∧nα = det(α).

(2) Note that

((∧nα) ◦ (∧nβ))(e1 ∧ · · · ∧ en) = (∧nα)((∧nβ)(e1 ∧ · · · ∧ en))

= (∧nα)(det(β)(e1 ∧ · · · ∧ en))

= det(β)((∧nα)(e1 ∧ · · · ∧ en))

= det(β)(det(α)(e1 ∧ · · · ∧ en))

= det(β) det(α)(e1 ∧ · · · ∧ en).

Then (∧nα) ◦ (∧nβ) is the left multiplication by det(β) det(α), so that
(∧nα) ◦ (∧nβ) = det(β) det(α) = det(α) det(β), since R is commutative.
The remainder of the proof is routine.
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U(R) denotes the group of units of a ring R.

Lemma 2.5. The following statements are true.

1. If α ∈ EndR(Rn), then α(adj(α)) = (det(α))idRn and (adj(α))α =
(det(α))idRn .

2. If α ∈ AutR(Rn), then det(α) ∈ U(R) and α−1 = (det(α))−1adj(α).

Proof. (1) Note that

[α]{e1, e2, ··· , en}(adj([α]{e1, e2, ··· , en})) = (det([α]{e1, e2, ··· , en}))In = det(α)In.

As in previous paragraph of Lemma 2.2, let Φ : EndR(Rn)→Matn×n(R)
be defined by Φ(σ) = [σ]{e1, ··· , en}.

α(adj(α)) = Φ−1([α]{e1,e2,··· ,en})Φ
−1(adj([α]{e1,e2,··· ,en}))

= Φ−1([α]{e1,e2,··· ,en}adj([α]{e1,e2,··· ,en}))

= Φ−1((det(α))In)

= (det(α))Φ−1(In)

= (det(α))idRn .

By a similar proof, we can show that (adj(α))α = (det(α))idRn .

(2) Assume that α ∈ AutR(Rn). Then there exists β ∈ EndR(Rn)
such that α ◦ β = idRn and β ◦ α = idRn . Then by Lemma 2.4,

det(α) det(β) = ∧n(β ◦ α) = ∧n(idRn) = 1.

By a similar proof, we can show that det(β) det(α) = 1. It follows that
det(α) is a unit in R, so that det(α) ∈ U(R). Now, use (1) to prove the
remainder.

Corollary 2.6. AutR(Rn) = {α ∈ EndR(Rn) | det(α) ∈ U(R)}.

Let a be any element of U(R). Write

diag{a, 1, · · · , 1} =


a 0 0 · · · 0
0 1 0 · · · 0

...
0 0 0 · · · 1


Consider the left multiplication Ldiag{a, 1, ··· , 1} by diag{a, 1, · · · , 1}. Then
Ldiag{a, 1, ··· , 1} is an R-automorphism on Rn. Define a map s : U(R) →
AutR(Rn) by s(a) = Ldiag{a, 1, ··· , 1}. Then we can see that s is a group
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homomorphism. Moreover,

(det ◦ s)(a) = det(Ldiag{a, 1, ··· , 1})

= det([Ldiag{a, 1, ··· , 1}]{e1, e2, ··· , en})

= det(diag{a, 1, · · · , 1})
= a,

so that det ◦ s = idU(R) (s is called a section of det). This shows that
the determinant map det : AutR(Rn) → U(R) is a surjective group
homomorphism and the exact sequence of groups

0 // SLR(Rn)
inc // AutR(Rn)

det // U(R) // 0

splits. Here, SLR(Rn) denotes Ker(det). Therefore, AutR(Rn) is the
semidirect product, denoted by SLR(Rn)o s(U(R)), of the normal sub-
group SLR(Rn) and a subgroup isomorphic to the unit group U(R) of
R. In fact, we have the following result:

Theorem 2.7. AutR(Rn) = SLR(Rn) o s(U(R)) and s(U(R)) ∼=
U(R).

Proof. Let α be any element of AutR(Rn). Then with the same no-
tations as in the statements prior to this result,

α = α ◦ ((s ◦ det)(α))−1 ◦ s(det(α)).

Furthermore, since det is a group homomorphism, it follows from Lemma 2.4
that

det(α ◦ ((s ◦ det)(α))−1) = det((s ◦ det(α))−1)det(α)

= (det(s ◦ det(α)))−1det(α)

= (det(α))−1det(α)

= 1,

so that α ◦ ((s ◦ det)(α))−1 ∈ SLR(Rn). Hence α ∈ SLR(Rn) ◦ s(U(R)).
This shows that AutR(Rn) = SLR(Rn) ◦ s(U(R)).

Let α ∈ SLR(Rn) ∩ s(U(R)). Then α = s(a) for some a ∈ U(R)
and hence a = idU(R)(a) = (det ◦ s)(a) = det(α) = 1. This implies that
α = s(a) = s(1) = idRn . Hence SLR(Rn) ∩ s(U(R)) = {idRn}.

Since det ◦ s = idU(R), we can see that s is injective. This shows that
s(U(R)) ∼= U(R). Therefore the proof is completed.

For any α ∈ s(U(R)), define ϕα : SLR(Rn)→ SLR(Rn) by ϕα(β) =
αβα−1, where β ∈ SLR(Rn). Then ϕα ∈ Inn(SLR(Rn)) ⊆ AutR(SLR(Rn)).
Define a map ϕ : s(U(R)) → AutR(SLR(Rn)) by ϕ(α) = ϕα, where
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α ∈ s(U(R)). Then ϕ is a group homomorphism. Consider the cartesian
product SLR(Rn) × s(U(R)). Define the multiplication on this carte-
sian product as follows: (α, s(a))(β, s(b)) = (α ◦ ϕs(a)(β), s(a) ◦ s(b)).
Then the cartesian product with this multiplication forms a group. This
group is called the external semidirect product, denoted by SLR(Rn)oϕ

s(U(R)), of SLR(Rn) and s(U(R)).

Theorem 2.8. AutR(Rn) ∼= SLR(Rn) oϕ s(U(R)).

Proof. Define a map ∆ : AutR(Rn) → SLR(Rn) oϕ s(U(R)) by
∆(α) = (α ◦ (s(det(α)))−1, s(det(α))), where α ∈ AutR(Rn). For any
α, β ∈ AutR(Rn),

∆(α)∆(β) = (α ◦ (s(det(α)))−1, s(det(α)))(β ◦ (s(det(β)))−1, s(det(β)))

= (α ◦ (s(det(α)))−1 ◦ ϕs(det(α))(β ◦ (s(det(β)))−1),

s(det(α)) ◦ s(det(β)))

= (α ◦ β ◦ (s(det(β))−1) ◦ (s(det(α))−1), s(det(α)det(β)))

= (α ◦ β ◦ (s(det(α)) ◦ s(det(β)))−1, s(det(α)det(β)))

= (α ◦ β ◦ (s(det(α ◦ β)))−1, s(det(α ◦ β)))

= ∆(α ◦ β)

If (α ◦ (s(det(α)))−1, s(det(α))) = (id, id), where α ∈ s(U(R)), then
α = id. For any (α, s(a)) ∈ SLR(Rn) o s(U(R)), take β = α ◦ s(a).
Then β ∈ AutR(Rn) and det(β) = det(α ◦ s(a)) = det(α)det(s(a)) = a,
so that

∆(β) = (β ◦ (s(det(β)))−1, s(det(β)))

= (β ◦ (s(a))−1, s(a))

= (α, s(a)).

Therefore, ∆ is a group isomorphism.

We have constructed the following commutative diagram of groups

0 // SLR(Rn)

Φ|SLR(Rn)

��

inc // AutR(Rn)

Φ
��

det // U(R) // 0

0 // SLn(R)
inc // GLn(R)

det // U(R) // 0

Here, the two row exact sequences split and the first two vertical arrows
are isomorphisms.

Corollary 2.9. GLn(R) = SLn(R)os(U(R)) and s(U(R)) ∼= U(R),
and GLn(R) ∼= SLn(R) oϕ s(U(R)).
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Let us summarize the results:

AutR(Rn)

o
��

SLR(Rn)

o
��

GLn(R) SLn(R)

o s(U(R))

o
��

o s(U(R))

and s(U(R)) ∼= U(R)

and s(U(R)) ∼= U(R),

and

AutR(Rn)

o
��

∼ // SLR(Rn)

o
��

GLn(R)
∼ // SLn(R)

oϕ s(U(R))

o
��

oϕ s(U(R)).

3. Endomorphism Rings of Projective Modules

We adopt the definition of the rank of a projective module in [5,
Definition 2.3.1] and [3, Definitions 2.2.11]. We will discuss various
properties of free modules and more generally of projective modules and
their endomorphism rings which are available for later discussion. The
main objective of this section is to show that if P is a projective R-
module with finite rank, then the map ϕ : AutR(P ) → U(R) defined
by ϕ(α) = det(α) is locally surjective. However, ϕ is not (globally)
surjective in general. We will give an example of this.

If L is a projective R-module of rank 1, then every R-homomorphism
L→ L is scalar. We prove this as follows:

Lemma 3.1. If L is a rank 1 projective R-module, then EndR(L) ∼=
R.

Proof. Define a map ϕ : R→ EndR(L) by

ϕ(a) = the left multiplication by a.

Then ϕ is an R-homomorphism. To show that ϕ is bijective, it suffices
to show that for every p ∈ Spec(R), the Rp-homomorphism ϕp : Rp →
(EndR(L))p is bijective. Assume ϕp(a/s) = 0, where a/s ∈ Rp. Then
ϕ(a)/s = 0. There exists an element t ∈ R\p such that tϕ(a) = 0.
ϕ(ta) = 0. taL = 0. (ta/1)Lp = 0. Since Lp

∼= Rp, we have (ta/1)Rp =
0. It follows that a/s = (ta/1)(1/ts) = 0. This shows that ϕp is injective.
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Let f/s ∈ (EndR(L))p, where s ∈ R\p and f ∈ EndR(L). Then
fp : Lp → Lp is an Rp-homomorphism. Let α : Lp → Rp be an Rp-
isomorphism. Consider the following commutative diagram

Lp
fp //

α

��

Lp

α

��
Rp

α◦fp◦α−1
// Rp

Write (α ◦ fp ◦ α−1)(1/1) = b/t, where b ∈ R, t ∈ R\p. Let x be any
element of L. Write α(x/1) = c/u, where c ∈ R, u ∈ R\p. Then

f(x)/1 = fp(x/1)

= (fp ◦ α−1)(c/u)

= (c/u)(fp ◦ α−1)(1/1)

= (c/u) (α−1 ◦ α ◦ fp ◦ α−1)(1/1)

= (c/u)α−1(b/t)

= α−1((c/u)(b/t))

= (b/t)α−1(c/u)

= (b/t)(x/1)

= (bx)/t

= (ϕ(b)(x))/t.

There exists v ∈ R\p such that v(tf(x) − ϕ(b)(x)) = 0. So, (vtf)(x) =
(vϕ(b))(x). Hence vtf = vϕ(b) in EntR(L), so that vstf = vsϕ(b). It
follows that f/s = ϕ(b)/st = ϕp(b/st) and b/st ∈ Rp. Therefore ϕp is
surjective.

This shows that for every p ∈ Spec(R), ϕp is an Rp-isomorphism, so
that ϕ is an R-isomorphism.

Of course, Lemma 3.1 is a generalization of Corollary 2.3. Let L be
a projective R-module of rank 1. Regarding each element a of R as the
left multiplication by a, we may have EndR(L) = R.

Lemma 3.2. Let R be a Noetherian ring and let P be a projective
R-module of rank n. The r-th exterior power ∧rP of P is a projective
R-module of rank nCr.
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Proof. Assume that P is a projective R-module. Then there exists
an R-module Q and a positive integer N such that P ⊕Q = RN . Hence

∧r(RN ) = ∧r(P ⊕Q)
∼= (∧rP ⊗ ∧0Q)⊕ (∧r−1P ⊗ ∧1Q)⊕ · · ·
⊕(∧1P ⊗ ∧r−1Q)⊕ (∧0P ⊗ ∧rQ)

∼= ∧rP ⊕ (∧r−1P ⊗ ∧1Q)⊕ · · · ⊕ (∧1P ⊗ ∧r−1Q)⊕ ∧rQ
It follows from Lemma 2.1 that ∧r(RN ) is an R-free module of rank

NCr, so that ∧rP is projective. Let p ∈ Spec(R). Then

(∧rP )p ∼= ∧r(Pp).

Since P has rank n, Pp is an Rp-free module with rank n. Hence by
Lemma 2.1 again, ∧r(Pp) is free with rank nCr. Therefore ∧rP has rank

nCr.

Let P be a rank n projective R-module over a Noetherian ring R.
Then it follows from Lemma 3.2 that ∧nP is a projective R-module and
rank(∧nP ) = nCn = 1. Let α ∈ EndR(P ). Like the free case, we define
a map ∧nα : ∧nP → ∧nP by

(∧nα)(p1 ∧ · · · ∧ pn) = α(p1) ∧ α(p2) ∧ · · · ∧ α(pn),

where p1, · · · , pn ∈ P . Then ∧nα ∈ EndR(∧nP ). By the proof of
Lemma 3.1, there exists a unique element a ∈ R such that ∧n α is the
left multiplication by a. That is, for any elements p1, p2, · · · , pn ∈ P ,

(∧nα)(p1 ∧ p2 ∧ · · · ∧ pn) = a(p1 ∧ p2 ∧ · · · ∧ pn).

Such the unique element a is called the determinant of α and is denoted
by det(α).

Theorem 3.3. Let R be a Noetherian ring. If P is a projective R-
module with rank n, then AutR(P ) = {α ∈ EndR(P ) | det(α) ∈ U(R)}.

Proof. Let P be a projective R-module of rank n. Let α ∈ AutR(P ) ⊆
EndR(P ). Then there exists β ∈ EndR(P ) such that α ◦ β = idP .
det(α)det(β) = det(α◦β) = det(idP ) = 1, so det(α) ∈ U(R). Conversely,
let α ∈ EndR(P ) such that det(α) ∈ U(R). To show that α ∈ AutR(P ),
we need to prove that for all p ∈ Spec(R), αp ∈ AutRp(Pp). αp ∈
EndRp(Pp) and det(αp) = (det(α))p ∈ U(Rp), so by Corollary 2.6, αp ∈
AutRp(Pp), as claimed.

If P is a projective R-module with finite rank, then write

SLR(P ) = {α ∈ AutR(P ) | det(α) = 1}.
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Then SLR(P ) is a normal subgroup of AutR(P ).

Let p be a prime ideal of R and let P be a projective R-module. If we
define a map λ : (EndR(P ))p → EndRp(Pp) by defining λ(α/s) : Pp →
Pp as (λ(α/s))(p/t) = α(p)/st, then λ is an isomorphism. Let P be a
projective R-module with rank n. If we define µ : (EndR(∧nP ))p →
EndRp(∧n(Pp)) by µ((∧nα)/s) = ∧n(α/s), then µ is an isomorphism.

Lemma 3.4. Let P be a projective R-module with rank n. Define
a map ϕ : EndR(P ) → EndR(∧nP ) by ϕ(α) = ∧nα. Then for every
prime ideal p of R the following statements are true:

(1) The following diagram is commutative:

(EndR(P ))p
λ //

ϕp

��

EndRp(Pp)

det
��

(EndR(∧nP ))p µ
// EndRp(∧n(Pp))

(2) ϕp is surjective.

Proof. (1) Let α/s be any element of (End(P ))p and let

{p1/s1, p2/s2, · · · , pn/sn}

be an Rp-free basis for Pp. Then

∧nλ (α/s) (p1/s1 ∧ p2/s2 ∧ · · · ∧ pn/sn)

= λ(α/s)(p1/s1) ∧ λ(α/s)(p2/s2) ∧ · · · ∧ λ(α/s)(pn/sn)

= α(p1)/ss1 ∧ α(p2)/ss2 ∧ · · · ∧ α(pn)/ssn

= ∧n(α/s)(p1/s1 ∧ p2/s2 ∧ · · · ∧ pn/sn)

This shows that ∧nλ(α/s) = ∧n(α/s). Hence by Lemma 2.4(1),

(det ◦ λ)(α/s) = det(λ(α/s)) = ∧n(α/s) = µ((∧nα)/s) = µ ◦ ϕp(α/s).

(2) Let a be any element of EndR(∧nP ) and let s be any element of
R\p. Then µ(a/s) ∈ EndRp(∧n(Pp)). It is known that det : EndRp(Pp)→
EndRp(∧n(Pp)) is surjective. So, there exists β ∈ EndRp(Pp) such that
det(β) = µ(a/s). We have already known that λ is surjective. So, there
exists an element α ∈ EndR(P ) and an element t ∈ R\p such that
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λ(α/t) = β (actually, take t = s.) By (1), we have that

ϕp(α/t) = µ−1 ◦ det ◦ λ(α/t)

= µ−1 ◦ det(λ(α/t))

= µ−1 ◦ det(β)

= µ−1(µ(a/s))

= a/s,

as required.

Theorem 3.5. Let R be a ring. If P is a projective R-module of finite
rank, then the map ϕ : AutR(P ) → U(R) defined by ϕ(α) = det(α) is
locally surjective and Ker(ϕ) = SLR(P ).

Proof. It is clear that ϕ is a group homomorphism. Moreover, it
follows from Lemma 3.4(2) that for every p ∈ Spec(R) ϕp is surjective.
Hence ϕ is an epimorphism. Also, Ker(ϕ) = SLR(P ).
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