• Title/Summary/Keyword: linear uncertain system

Search Result 287, Processing Time 0.026 seconds

LMI-based Design of Integral Sliding Mode Controllers for Polytopic Models (폴리토픽 모델을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.44-48
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for an uncertain system with a polytopic model. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law.

Decentralized Output Feedback Robust Passive Control for Linear Interconnected Uncertain Time-Delay Systems

  • Shim, Duk-Sum
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.140-146
    • /
    • 2002
  • We consider a class of large-scale interconnected time delay systems and investigate a decentralized robust passive control problem. sufficient conditions for unforced interconnected uncertain systems with time delay to be robustly stable with extended strictly passivity is given in terms of algebraic Riccati inequality and linear matrix inequality. The decentralized robust passive control problem for norm-bounded and positive real uncertainty is shown to be converted to extended strictly positive real control problem for a modified system which contains neither time delay nor uncertainty.

An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control (크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].

Robust stability of linear system with unstructured uncertainty (비구조적인 불확정성을 갖는 선형시스템의 강인 안정성)

  • 김진훈;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.52-54
    • /
    • 1991
  • In this paper, the robust stability, and the quadratic performance of linear uncertain systems are studied. A quadratic Lyapunov function candidate with time-varying matrix is derived to provide robust stability bounds. Also upper bounds of a quadratic performance is given under the assumption that the uncertain system is stable. Both the robust stability bounds and the upper bounds of a quadratic performance are obtained as solutions of a class of modified Lyapunov equations.

  • PDF

Fuzzy Output-Tracking Control for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 퍼지 출력 추종 제어)

  • Lee, Ho-Jae;Joom, Young-Hoo;Park, Jin-Ba
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • A systematic output tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities. A stability condition on the traversing time instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design.

Non-fragile Guaranteed Cost Controller Design for Uncertain Time-delay Systems via Delayed Feedback (지연귀환을 통한 불확실 시간지연 시스템의 비약성 성능보장 제어기 설계)

  • Kwon, Oh-Min;Park, Ju-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.458-465
    • /
    • 2008
  • In this paper, we propose a non-fragile guaranteed cost controller design method for uncertain linear systems with constant delyas in state. The norm bounded and time-varying uncertainties are subjected to system and controller design matrices. A quadratic cost function is considered as the performance measure for the system. Based on the Lyapunov method, an LMI(Linear Matrix Inequality) optimization problem is established to design the controller which uses information of delayed state and minimizes the upper bound of the quadratic cost function for all admissible system uncertainties and controller gain variations. Numerical examples show the effectiveness of the proposed method.

Recursive Linear Robust Moving Target Tracking Filter Using Range Difference Information Measured by Multiple UAVs (다중 UAV에 의해 획득된 거리 차 측정치를 이용한 순환 선형 강인 이동 표적추적 필터)

  • Lee, Hye-Kyung;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1738-1739
    • /
    • 2011
  • In this paper, the range difference based the moving target tracking problem using multiple UAVs is solved within the new framework of linear robust state estimation. To do this, the relative kinematics is modeled as an uncertain linear system containing stochastic parametric uncertainties in its measurement matrix. Applying the non-conservative robust Kalman filter for the uncertain system, a quasi-optimal linear target tracking filter is designed. For its recursive linear filter structure, the proposed method can ensure the fast convergence and reliable target tracking performance. Moreover, it is suitable for real-time applications using multiple UAVs.

  • PDF

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies (불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Moon, Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.

Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method

  • Wang, Rui;Zhao, Jun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.492-500
    • /
    • 2007
  • This paper focuses on the problem of guaranteed cost control for a class of uncertain linear delay systems with actuator failures. When actuators suffer "serious failure" the never failed actuators can not stabilize the system, based on switching strategy of average dwell time method, under the condition that activation time ratio between the system without actuator failure and the system with actuator failures is not less than a specified constant, a sufficient condition for exponential stability and weighted guaranteed cost performance are developed in terms of linear matrix inequalities (LMIs). Finally, as an example, a river pollution control problem illustrates the effectiveness of the proposed approach.