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Guaranteed Cost Control for a Class of Uncertain Delay Systems
with Actuator Failures Based on Switching Method

Rui Wang and Jun Zhao*

Abstract: This paper focuses on the problem of guaranteed cost control for a class of uncertain
linear delay systems with actuator failures. When actuators suffer “serious failure” the never
failed actuators can not stabilize the system, based on switching strategy of average dwell time
method, under the condition that activation time ratio between the system without actuator failure
and the system with actuator failures is not less than a specified constant, a sufficient condition
for exponential stability and weighted guaranteed cost performance are developed in terms of
linear matrix inequalities (LMlIs). Finally, as an example, a river pollution control problem
illustrates the effectiveness of the proposed approach.

Keywords: Actuator failures, average dwell time, guaranteed cost control, linear matrix

inequalities (LMIs), switched delay system.

1. INTRODUCTION

Time delay is a common phenomenon encountered
in engineering control. Also, we notice that time delay
is frequently a source of instability and often
deteriorates system performance. Recent years have
witnessed an enormous growth of interest in stability
analysis [1-5] and controller syntheses [6-8].

On the other hand, when controlling a real plant, it
is always desirable to design a control system which is
not only asymptotically stable but also guarantees an
adequate level of performance. One way to address
the robust performance problem is to consider a linear
quadratic cost function. This approach is the so-called
guaranteed cost control [9]. Since the work of Chang
and Peng, this issue has been addressed extensively
[10-13]. Owing to the growing demands of system
reliability in aerospace and industrial process, the
study of reliable control has recently attracted
considerable attention. Therefore, the problem of
reliable guaranteed cost control attracts more and
more research interests in recent years [14-16].
However, these reliable control design methods are all
based on a basic assumption that the never failed
actuators can stabilize a given system. For the case
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where actuators suffer “serious failure” the never
failed actuators can not stabilize the system, the
existing design methods of reliable control do not
work. In our recent work [17], switching technique is
introduced to deal with this case and a design method
is obtained by using multiple Lyapunov function
method. But for the case where actuators suffer
“serious failure” in delay systems, no results have
been available up to now.

In this paper, we introduce switching strategy to
solve the reliable guaranteed cost control problem for
delay systems with “serious failed” actuators. The
average dwell time method, which has been shown an
effective tool in the study of stability analysis for
hybrid or switched systems [18-22], is adopted to
design controllers such that the closed-locp system
satisfies guaranteed cost control in presence of
seriously failed actuators. Finally, a numerical
example is given to show the effectiveness of the
proposed method. Although the idea that switching
technique is introduced to deal with the problem of
“serous failure” comes from [17], there are three
features in this paper. First, delay effect is considered
while it is neglected in [17]; second, the conditions of
exponential stability and guaranteed cost control are
developed while asymptotical stability and H

performance are considered in [17]; the tool used in
this paper is the average dwell time method while
multiple Lyapunov method is adopted in [17].

In this paper, |x(t)|| denotes the usually 2-norm

and |x,| = :lglonx(hh 6)|. “*’denotes the symmetric

block in one symmetric matrix.

ﬂ‘min (S)

Amax (S) and

denote the maximum and minimum



Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching... 493

eigenvalues of matrix “S”, respectively.
2. PROBLEM FORMULATION

We consider the following uncertain linear system

x(1) = (4 + AA)x(t) + Ex{(t — h) + Bu(?), 1
%, (0)=p(0), O€[-h,0], (1)

where xc R" is the state, u e R?1is the control input,
A,B,E are constant matrices of appropriate
dimensions, (@) is a differentiable vector-valued
initial function on [-A,0], #>0 denotes the state

delay, AA is a real-valued matrix representing time-
varying parameter uncertainties satisfying

A4 = DF(t)N

for some known constant matrices D, N, F(¢) is an
unknown matrix function satisfying

FT(OF@)<I.

Actuator failures are assumed to occur within a
prescribed subset of control channels. We classify
actuators of the system (1) into two groups. One is a
set of actuators susceptible to failures, which is

denoted by Qc{l,2,---,q}, these actuators may
occasionally fail. The other is a set of actuators robust
to failure, which is denoted by Q< {1,2,---,q9} Q.

Using these notations we introduce the decomposition
B=Bg+Bq, )]

where Bg,Bq are formed from B by zeroing out

columns corresponding €, Q respectively.
Let @ — Q correspond to a particular subset of

susceptible actuators that actually experience failures.
Now, introduce the decomposition similar to (2):

B:B5+Ba)’

where B;,B, are formed from B by zeroing out
columns corresponding @,® respectively. Thus the
following inequalities can be easily obtained,

BgBs! <ByBy' , B,B, <BoBg' . 3)

Remark 1: In the study of reliable control, there is
a usual assumption that (A4,B) is controllable [14-
16] since it is easier to design a controller in this case.
Here remove this assumption to cover more general
situations including both cases of (4,B;) being

controllable and being uncontrollable.

Without loss of generality, we consider the case of
(4,B;) being uncontrollable in this paper.

Suppose that the faulty actuators can be recovered
through a time interval. Then, the state of the system
is dominated by the following piecewise differential
equation:

) {(A +AA)x + Ex(t —h) + Bu
%= 4)
(A+ Ad)x + Ex(¢t — h) + Bu.

We design two kinds of state feedback controllers:
one is for the system without actuator failure; the
other is for the system with actuator failures.
Therefore, the system (4) can be rewritten into the
following switched delay system

x(t) = (A + AA)x(t) + Ex(t - h) + Ba(t)uo.(t),

&)
%, (6) = p(8), O[-h,0],
where
o(t):[0,40) > M ={1,2}, B, =B,B,=By.
We design state feedback controllers for switched
system (5) in the following state feedback form:

u; =K, x, 6)

where K; (i=1,2) are controller gains.

Remark 2: For the self-repairing control systems
and fault tolerant control systems, monitoring the
system and detecting the instance of actuator failure
(i.e., identify which discrete state i) can be realized
by the adaptive detection observer or sliding mode
observers, and so on (see for example, [23,24]).

Definition 1: The system (5) is said to be
exponentially stable under switching signal o if the
solution x(f) of the system (5) satisfies

[ <re 0 |, |

for constants I'>1 and y >0.

Motivated by the idea of weighted disturbance
attenuation in [20], the weighted cost function
associated with the system (5) is given by

+00
J= j . e 24 [x(6)" Ox(t) + ul (yRugpldt,  (7)

where A is a positive constant, 0 and R are

positive definite weighted matrices.
Now, the weighted guaranteed cost control problem
for the switched system (5) is stated as follows:
Definition 2: Consider the system (5). If there exist

a control law ul* for each subsystem and a switching
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law o(¢), and a positive scalar J " such that for all
admissible uncertainties, the closed-loop system is
asymptotically stable and the value of the cost
function (7) satisfies J <J *. then the system (5) is
said to satisfy weighted guaranteed cost control, J :
is said to be a weighted guaranteed cost upper bound.

Definition 3 [18,19]: For any switching signal o
and any t>7>0, let N,(r,#) denote the number
of discontinuities of o on an interval (z,¢). If

N (r,)<Ny+ % ®)

Ta

holds for given N, >0, 7, >0, then the constant

Ta

chatter bound. As commonly used in the literature, for
convenience, we choose Ny =0 in this paper.

is called the average dwell-time and N, is the

Let T*(¢) (resp., T (¢)) denote the total activation
time of the system with actuator failures (resp. the
system without actuator failures,) during [#,,7). For

any given Ae(0,4,), we choose an arbitrary Ae
(A,4). Motivated by the idea in [20], we propose
the following switching law:

(S) Determine the switching signal o(f) such that
the inequality

O ot A

> 9
T A-A ®

holds for any given initial time #,, where 4, is a

positive number to be chosen later.

Remark 3: The idea of switching condition (S) is
in fact to constrain activation time of the system with
actuator failures T7(fy,f) relatively small compared

with that of the system without actuators failure.
3. MAIN RESULTS

In this section, we first consider the non-switched
delay system (1). Choose the Lyapunov functional
candidate of the form

V(g)=x" P+ [ PO (5)Zx(s)ds, (10)
! t—h

where P,Z are positive definite matrices to be

chosen later.
Lemma 1: Given constant delay % and positive

constants Ay,&, if there exist positive definite

matrices P and Z such that the following matrix
inequality

Q) PE
ETp gty <0 (11)
hold, where

©=0+Z+PA+A"P+ePDD"P+&'NTN
+24,P - PBR™'BT P,

then, under the state feedback control u = Kx with
K = —R_lBTP, we have

Vix)< e_uo(HO)V(xt o)

- " 2T (90x(s) +uT (5)Ru(s))ds.

‘o

Proof: See the Appendix.
When actuators failure occurs, the system (1)
becomes the form

x(t) = (4 + Ad)x(t) + Ex(t — h) + Bu,

X, (6)=p(6), 6<[-h0]. (12)

By designing state feedback control u=Kx with

K= —R_lBa—T,P, we have the following result.
Lemma 2: Given constant delay 4 and positive

constant J,,&, assume that there exist positive

definite matrices P and Z such that the following
matrix inequality

IT PE
ETp _gthhy <0 (13)
hold, where

M=Q+Z+PA+ A" P+ePDD"P+s'NTN
-1pT
~24,P - PB5R™'BLP,

then, we have
V(x) <00V (x, )

- J; 2T (9)Ox(s) +u” (s)Ru(s)]ds.

Proof: See the Appéndix.
Remark 4: Lemma 1 gives some decay estimate

for Lyapunov functional candidate V(x,) in (10),
while Lemma 2 gives some estimate of exponential
growth for V(x,). These estimates will be used to
develop the main result.

Theorem 1: If there exist a set of positive scalars
£,4y and positive definite matrices F,Z; (i=12)
such that the matrix inequalities
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- AE 0 (14
<0,
ETI)l _e—ZZOhZI )
= PE
2 2
<0, 15
(ET Py —e‘zﬂohzj 1>

hold, where
B, =Q+PBA+A'R+¢BDD'R+s'NTN+2Z
+24R -BBR'B" R,
2,=0+PA+A P, +sPRDD" P, +¢'N'N + 2,
—24P, - B,B5R'BLP,.
Then, the system (5) under the state feedback
controllers (6) with K; = —R_IB,-T P, is exponentially

stable for any switching signal o satisfying the
condition (S) and the average dwell time

* ll‘l/l
aZTa=—27, (16)

where p 21 satisfies
B<pP;, Z;spZ; Vi jeM. a7

Moreover, a weighted guaranteed cost upper bound is
given by

*

0
J z%[xgpa(to)xo N J_hezﬂosxT(S)Za(to)x(s)ds]-

(18)
Proof: Define a piecewise Lyaponov functional
candidate for system (5) as follows

Vix)= Va(z) (%)
t 2 -
= xTPG(,)x+ It_he Ao(s t)xT(s)Za(t)x(s)ds,

(19)
where P,Z; (i=1,2) satisfying (14) and (15).

According to (17) and the definition of V,(x,) in

(19), we can easily obtain
VisuV;, Vi jeM. 20)
For any given ¢ >0, welet

Ozfo <t1 <"‘<tk =tNo’(t0,t)

denote the switching time instants of o over the
interval (#,7). Using (14), (15), Lemma 1 and
Lemma 2, we have

Vix)= 0 (x)=Vi(x)

e_uo(t_tk)y} (xtk )= J':k e_uO(t_S)\Pi (s)ds, i=1,
<
Y, (x, )~ Ltk U0 (s)ds, i=2,

21
where P, (s) = xT (s)0x(s) +u] (s)Ru;(s).
Combining (20) and (21) leads to

22T (1 £)-2 29T (%,
Vix)<e AT (4 ,1)=2 20T (t t)Va(tk)(xtk)

v 22T (5,0)-22gT
_Itke AT (5,6)-24 (S’t)\PO'(tk)(s)ds

22T (5 1)-220T ™ (1.1
=e H i)
_ L’ e2/10T+(s,t)—210T_(s,t)\I_,

k

< 82/10T+(fk—1,t)—2ﬂoT T (t-150) A

=)
o(ty) (s)ds

(tp-0) Ky
_ Q2T (te:)-22T (1 Dy
e 225TH (5,0)~225T (5,)

th_l e ¥ o, (S)ds

t + ) -
_J.tkebloT (s.t)-24T (s,t)\{]o-(tk)(s)ds

<een

+ _ —
SﬂNU(O’t)eZAOT (O’t) 2/10T (O’I)Va'(to)(xo)

 [[ G0 RAT 02T 60 ()

26T (0,6)-24T~(0,0)+N.(0,) In
= 2T (0.0)-24T" (0.N)+N5 (0.1) ﬂVo-(to)(xO)

_ ,[t ezzor"(s,t)—uor‘(s,t)+N(,(s,r)m Iy

0 o(s) (s)ds.

(22)
First, we give the proof of the exponential stability for
switched delay system (5).
According to (8) and (16), we have

N,(0,))lnu<2At, Vt>0. (23)
Therefore, it follows from (22) and (23) that
V(xt) < eZAOT’r 0,6)-24T" (0,t)+N0(0,t)lnyVa(t )(xO)
= 0
26T+ (0,6)-2gT ™~ (0,6)+2(A" -4
<e AT (0,022 (0,)+2( )tVor(tO)(xO)

< e-u*t+2(,1*—,1)t

Vo(te)(%0)
=e M Vo(tg) (%0)-
(24)
From the Lyapunov functional in (19), we have
2 2
alx@|” <Vx) <b|x|" . (25)

where
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a=min j‘min (B )’
ieM
b= P)+h Z;).
MaX Ay (F) + hIaX A (Z;)
Using (24) and (25), we get
2 1 b _ 2
”x(t)” < ;V(x,) < ;e 24 ||x0” .

Therefore,

o e ol @)

which implies the system (5) is exponentially stable.
In the following, we show that the closed-loop
system satisfies the performance upper bound.

Multiplying both sides of (22) by e No (0 p
results in

e—No-(o,t)ln[lV(xt)

+ B -
SezﬂoT (0,1) zﬂoT (O’t)Vo-(tO)(xo)

_ J(f) ezz(,r’f(s,z)—zzOT‘(s,t)—NU(o,s)ln #‘Po(s) ds 7)

24"
<e tVU(,O)(xO)

_ J(; eUOTJr (:)=22T (s:)~N5(0,5)In ﬂ\Pa(s) (s)ds.

From (23), (27) can be written as
e MY (x) e Ver(p) (%0)

_ L; e2/10T+(s.,t)—ZﬂoT_(s,t)—2As\Po_(5) (s)ds.

Note that e ># V(x)=0, weknow

jf 62/10T+(s,t)—ZAOT_(s,t)—lellj

0 o(s) (S)dS

< 6_21 tVo’(tO) (xo )

Therefore,

*

PTIN _
.[oe 240(t—5) us?a(s)(s)dsge 24 tVa(to)(xO)' (28)

Now, integrating (28) from =0 to oo yields
N

0 _ © _n _
= -[0 e us‘f’g(s)(s)(_"s g 2t s)dt)ds

_ 1 po ags
_Ej" eV o (8)ds.

1t obviously holds that

j(: g2y (s)ds)dt

e
275 70

© * 1
-2
< '[0 (4 tVO’(to)('xO)dt :‘2‘71/0.({0)()6'0).

e sy o(s)(8)ds

Thus, we have

® 22
joe W (5 (5)ds

0
= %[xg Prgymo + |, &% (9)Zgpyx(s)ds]

This is the end of proof. O

Remark 5: The controller designed is switching
controller, in which switching law must satisfy two
conditions. One is the condition (S), which constrains
the “serious failure” time not too large; the other
condition is about average dwell time, which is a
constraint of “serious failure” frequency on actuators.
Therefore, Theorem 1 indicates that the system (1)
can satisfy guaranteed cost control on condition that
“serious failure” time is correspondingly shorter and
“serious failure” frequency is also correspondingly
lower.

Remark 6: When g =1, namely, r: =0, which
implies that switching signals can be arbitrary ones
and a common Lypunov functional is formed. In this
case, the switched system (1) satisfies guaranteed cost
control under arbitrary switching. Moreover, setting
A=0, which means no switching between
subsystems, the weighted guaranteed cost control
degenerates into a regular guaranteed cost control
problem without weighting e ** for a single
subsystem.

Theorem 1 provides a sufficient condition for the
solution to the weighted guaranteed cost control
problem. However, inequalities (14) and (15) are not
easy to solve since they are not LMIs. The following
remark shows how to turn (14) and (15) into LMIs,
which can be easily solved by Matlab.

Remark 7: Pre- and post-multiplying both sides of
inequalities (14) and (15) by diag{X,,X;} and

diag{X,,X,}, respectively, where X; = P,-"1 (i=
1,2), we obtain

X,0X, + AX; + x;47

+eDDT + 7\ X, NT Nx; EX, 0
+X,Z, X, + 279X, - BR'BT ’
* —e M x, 7, X,
(29)
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X,0X, + AX, + X, AT +

eDDT + &\ X,NTNX, + EX, .
<U.
X,Z,X, — 27X, —B5R B
* —e_zlth2Z2X2
(30)

We define XIZIX] = Yi , XzZzXz = Y2. According to
Schur complement Lemma, matrix inequalities (29)
and (30) are equivalent to the following LMIs

AX; + X;47 +eDD”

EX, X, XN
+Y; +24 X, - BR'BT
* e 0 [<0
* * _Q—l 0
* * * —gl
€2y
AX,) + X, AT +Y,
+eDD" — 220X, EX, X, X,NT
- ﬁRaleTz <0.
* —e My, 0 0
* * _Q‘l 0
* * * _g[
(32)

Remark 8: Note that in LMIs (31) and (32) e can
be regarded as a variable. In addition, in order to get a
lower guaranteed bound, we need a larger x# and a
smaller 4y, which can be realized by parameter

iterative method. But this results in larger average
dwell time in (16), which is of course undesirable.

Thus, we need to select the parameters x and A,
according to practical requirement.

4. EXAMPLE

In this section, we apply the proposed design
method to illustrate the river pollution control
problem.

Let z(¢) and ¢(t) denote the concentrations per
unit volume of biochemical oxygen demand (BOD)
and dissolved oxygen (DO), respectively, at time?, in
a reach of a polluted river. Let z and q*,
corresponding to some measure of water quality

standards, denote the desired steady values of z and
g, respectively. Define
() =2() -2, %) =q(t)~q ,
T
x(t)=(x1 ) xz(t)) .

497

Then the dynamic equation for x is described by
[25,26].

() =(A+ADx(t) + (E; + AE)Dx(t — hy) (33)
+(Ey +AEy)x(t —hy) + Bu +w,

where

Az[’klo—m—’h 0 ]
—k3g —kyo =~ ’
—Ak (1) 0

AA(F) = _(n O
(t)_ H B= H
M) ~Ney (f) 0 1

z =(ﬁ0’72 0 J AE z[ﬂzAﬂ 0 j
: 0o pm) 0 mAB)

E =((l—ﬂo)f72 0 ]
2 0 (-Bm)

(A8 0
2 0 -1AB ’
w(0) - Ay ()2 J

w:
[Vz(f)—N%(f)Z + Ay (1(g° —q )

u(t) =(u1 ) uy (t))T is the control variables of river

pollution. The physical meaning of these parameters
can be found in [25].
When w=0,/ =h,,(33) can be rewritten as the

following uncertain linear delay system

(1) = (A + AA)x(t) + Ex(t — h) + Bu,

0
where E = (772 J
0 m

In this simulation, we choose kg =0.8, ky; =1,
k30 =1.5, m= -0.4, M = —0.6, Ak3 (t) =—0.1sin¢, Ak]
(t) = Ak, (1) =—0.04sin¢, h=0.2. Thus

0.2 0 -04 0
A:( J’Bz( j’ Qz{l},
-1.6 =05 0 1

0 0 -0.6 0
Bﬁ = » E= ’
01 0 -0.6

the parameter uncertainties AA4(t) = DF ()N,
i 02 0 02 0
where F(t)=sint, D= , N= .
0.5 0.1 0 04

Suppose that the faulty actuators can be recovered
through a time interval, the guaranteed cost control
problem of system (34) can be solved by using

Theorem 1 Choosing 4y =2, £=1, we get positive
definition matrices P,Z; (i=1,2) by solving LMIs
(31),(32)

(34)
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A =( 1.9001 -0.0416}
0.0416 04128

A :( 1.3576 -0.0265],
-0.0265 0.2541

z - ( 10.8364 —0.2885}

-0.2885 0.5164
(73753 0.1710

2 _(-0.1710 0.2611}

Choosing =24, A=0.5, A" =2, from (16), we
getz, =1121—f=0.8755. According to Theorem 1, if

the activation time ratio between the system without
actuator failure and the system with actuator failures
is not less than

T 0, A _g
TN A=A

exponential stability is achieved.
Moreover, from (26), we have

()] < 4.0078¢ ) jix, .

Let the initial state of system (34) be x(f)=(1 —0.5)"

for —0.2<t<0. From (18), the weighted guaranteed
cost upper bound is

J = %[ng]xo + Ji)h "5 xT (5)Z,x(s)ds]

=4.3346.

5. CONCLUSIONS

In this paper, we have investigated the problem of
guaranteed cost control for a class of linear delay
systems for the case where actuators suffer failures.
We focused on the case that the never failed actuators
are inadequate to stabilize the systems by a single
state feedback. Suppose that the faulty actuators can
be self-repaired through a time interval, the entire
system can be regarded as a switched system Based
on average dwell time scheme, we have designed the
switching state feedback controllers in terms of LMIs
such that the considered delay systems is
exponentially stable and a weighted guaranteed cost
upper is derived.

APPENDIX
Proof of Lemma 1: The derivative of V' (x,)along
the trajectory of the delay system (1) is given by

V(x) = 2xT () Pi(®) + x7 (1) Zx(t) — e 20" xT (¢ — )
X Zx(t — By = 22, L’_he%(S")xT (s)Zx(s)ds

= 2x7 (£)P[ (A + Ad)x(t) + Ex(t — h) + Bu]
+ %7 () Zx(t) - e 2 xT (1 — yZx(t - )
~27, J:_heu‘)(s_t)xT (5)Zx(s)ds
<x"(PA+A"P+ePDDTP+e'NTN+Z
~2PBR7'BT P)x + xT (¢)PEx(t - h)
+xT (t = W)ET Px(t) — e 2297 (t — i) Zx(t — h)
~244 jt’_he%(s")xT (5)Zx(s)ds.

Therefore,
V424,V
<xT(PA+A"P+ePDDTP+e 'NTN+Z
+24P - 2PBR™'BT P)x + xT (t)PEx(t - h)
+x7 (¢t = ET Px(t)— e 2" xT (1 — i) Zx(t - )

o
=( () ]T PBR™'BT P PE ( (0 }

t—h t—h
e=n ETp -z K=

From (11), we have

V <-24V —x' (Q+PBR'B" P)x 35)
<224V —(xT Ox + u” Ru).

By using the differential theory and (35) for (10), we
have

Vi(x)< e_UO(HO)V(xtO)
- jt' e 20T (0x(s) + 2" (s)Ru(s)lds.
0
Proof of Lemma 2: Similarly to the proof of

Lemma 1, differentiating ¥ (x,)along the trajectory
of system (12) results in

V(x,) = 2x" P[(4 + Ad)x + Ex(t — h) + BKx]
+x7 (1) Zx(t) — e 20" xT (t — h)Zx(t — h)
-2 j:_h 220005 (9)Zx(s)ds.
Note that the outputs of faulty actuators

corresponding to any @ < Q. are assumed to be zero,

i.e., the control input #(x) may be applied to the plant
only through normal actuators, we have
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BK =-B;R'BLP.
From (3), we have
BoR™'BL <ByR'BL. (36)
Therefore,
V(x,)=2x" P[(A+Ad)x + Ex(t - h) + Bgu]
+xT (O 2x(t) — e 22" xT (¢ - ) Zx(e - )
=24 [1 RO (5)Zx(s)ds
<xT(PA+ATP+ePDDTP+c7'NTN
+Z—2PB;R ' BLP)x + x" (t)PEx(t - h)
+xT (t = WET Px(t)— e 2" xT (1 - h)zZ
xx(t—h)=24q || 090" (5)Zx(s)ds.

According to (36) and (13), we have

V=22V

<xT(PA+ATP+ePDDTP+s'NTN+Z
~24yP —2PBgR ' BEP)x + x" (t)PEx(t - h)
+x7 (¢ = W)ET Px(t) — e 22"xT (t — h)Zx(t — )
-4, J‘:_h 265 T () Zx(s)ds

<xT(PA+ATP+ePDD" P+ 'NTN+Z
— 24P~ 2PB5 R BEP)x + x" (t)PEx(t - )
+x7 (t = W)ET Px(t) - e "< (¢ — i) Zx(t - h)

T
PE
:( () J PBsR'BLP ( x(t)h]
x(t—h) . i x(t—h)
E'P e/
<.
Therefore,

V <240V - (xT Qx +u” Ru),
which in turn gives
V(x) <0ty (x, )
— |1 PRI (5)0x(s) +u” (5)Ru(s))ds.
0
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