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Abstract

This paper deals with the guaranteed cost control problems for a class of discrete—time linear
uncertain systems with time-varying delay. The uncertain systems under consideration depend on
time varying norm-bounded parameter uncertainties, We address the existence condition and the
design method of the memoryless state feedback control law such that the closed loop system not
only is quadratically stable but also guarantees an adequate level of performance for all admissible
uncertainties. Through some changes of variables and Schur complement, It is shown that the
sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all

variables,
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I. Introduction

Recently time delay is main concermns because time
delays often are the causes for instability and poor
performance of control systems. Since some works of
controller design methods have been developed, many
state feedback controller design algorithms of time
delay systems were presented“ 9 The problems  of
the quadratic stabilization of linear uncertain systems
with norm-bounded parameter uncertainties have
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reccived considerable  attention in  the recent

years‘ 1 «%,10!1

The guaranteed cost control approach to the design
of the state feedback control law for linear uncertain
systems has received a considerable amount of
interest. Many related works treated the guaranteed
cost control for the discrete-time linear uncertain
uncer-

systems  with  norm-bounded  parameter

291112

tainties' | But most of the results are related to

uncertain  systems without time delay or with
constant time delay. Hence, increasing attention has
been paid to the guaranteed cost control for the
discrete~time  linear uncertain  systems  with
time-varying delay.

Guan et al” dealt with the guaranteed cost control
for the discrete-time linear uncertain system with
constant time delay. They showed a sufficient
condition for guaranteeing not only the quadratic
stability of the closed loop system but also the cost
function bound constraint. However, they did not
consider the discrete-time linear uncertain system
with time-varying delay. Therefore, we deal with the
guaranteed cost control for the discrete-time linear
uncertain systems with time-varying delay.

In this paper, we propose the guaranteed cost
control problem of a class of discrete-time linear
uncertain systems with time-varving delay. We
address the existence condition and the design
method of the memoryless state feedback control law
such that the closed

quadratically stable but also guarantees an adequate

loop system is not only
level of performance for all admissible uncertainties.

Through some changes of variables and Schur
complement, the obtained condition can be rewritten
as an LMI form in terms of all variables. Using LMI
toolbox, the solutions can be easily obtained.

The notations in this paper are quite standard. R,
R?, and RPY the set of
integer numbers, the set of P -dimensional Euclidean

space and the set of all PX¢ real matrices. The

denote, respectively,

superscript “T " denotes the matrix transpose and the
notation X 2Y (respectively, X >Y ) where X and Y
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are symmetric matrices, means that X -Y s
positive semi-definite(respectively, positive definite).

I is the identity matrix with compatible dimension.

. Robust Performance Analysis

We consider the discrete-time linear uncertain
system with time-varving delay described by the

difference delay equation,

x(k +1) = A x(k) + Ay (k) x(k - d (k)
= (A+ Ak (k) + (A, + DA, Utk —d (k)),
xky=9k), —m<k<0, )

where k)€ R i the state, the time-varying delay

d(k)eR g the positive integer satisfying

0<d(k)§m, VkZO, (2)
and %) is an initial value at k. AeR™" and
A, e R™" represent constant  matrices  with

appropriate dimensions, A(k)e ™" and A4,(k)e R™
denote real-valued matrix functions representing
parameter uncertainties. It is assumed that all states
state feedback and the
norm-bounded of the following

are measurable for
uncertainties  are

form:

A(kY=H\F(K)E,, AA;(k)=H,F(k)E,, (3)
where H,e R™*, i=1,2 and E eR™, i=12 are
known  constant  matrices  with  appropriate

dimensions, and F(k)e R”¢ is unknown but norm-
bounded as

FT(kyFky< 1. 4
Associated with the system (1) is the quadratic

cost function :

7 =3+ toex),

k=0

where €>0 is a positive definite matrix.



We discuss Schur complement used in this paper.
One of the basic ideas of LMI problem is that the

nonlinear (convex) inequalities are converted to LMI

]

form using Schur complement.
R . . L L»
Lemma 1'™': For the symmetric matrix L=[L;‘ L"
12 22

the following are equivalent as follows:

1) L<0,
i) Ly <0 Ly ~LiLiLy, <O, ®)
i) Loz <0, Ly~ Lip Ly Li; <0. u

We introduce Lyapunov functional to give an upper

bound on the quadratic cost function (5),

m k=l

V) =" Pk + 3, D& ()Sx()).

in] jek—i ()
Definition 1: A positive definite matrix P is a
quadratic cost matrix for the system (1), the

quadratic cost function (5), and the given values

m>0 and 0<7<l if there exists a positive definite

matrix § such that the following LMI is feasible:

(A+AAK))T P(A+AA(K) -P+Q+mS

(A, +AA; () P(A+AA(K))
0
0
(A+AAG)) P(A; +AA, (k) 0 0
(A +AA (kW P(A, + 04, (k)-8 0 U
0 -®, o,
0 o, -t'o,| ©

for all FTOF)<I. In here, Pw is defined as

follows :

m

——P
&, =diag{S,S,--- 5, S}, @

where the dimension of ®» is m (the upper bound of

time~varying delay) times the dimension of §. W

From Definition 1, we will show that the system
(1) is quadratically stable for a guaranteed level of

performance,

A A7 AL FhA|e o]4b Al EAIAL Al Rl diE B
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Theorem 1: Consider the system (1) with the cost
function (5) and suppose that £>0 is a quadratic
cost matrix. Then the system (1) is quadratically

stable and the cost function satisfies the bound

m =l
7 < Px©)+ Y, >+ (HSK().

i=1 jm—i am

Prodf:

Suppose P>0 is a quadratic cost matrix for the
system (1) and the quadratic cost function (5). Then
it follows from Definition 1 that there exists a
positive definite matrix § satisfying the LMI (8).

Taking the difference of the Lyapunov functional
(7) yields,

AV (x(k)) =V (x(k +1)) =V (x(k))
=T (k) AT (k)PACK)x(k)
+x7 (k) AT (k)PA, (k) x(k —d(k))
+xT (k- d(k) AT (k)PA(k)x(k)
+x7 (k— d (k)AL (k)PA (k) x(k ~ d (k)

— 7 () Px(k) + mxT (k)Sx(k)

- ZxT (k —)Sx(k ~i).

i=1 (1
It follows from the LMI (8) that
AV (x(k)) < —xT (k)Qx(k)
+7{x” (k - d(k))Sx(k — d(k))~ ZXT (k —i)ySx(k )], a2)
i=l
From (12) and the upper-bound of the

time-varying delay, this implies that the system (1)
is quadratically stable. Furthermore, it follows from
(12) that

T (k)Qx(k) < —AV (x(k))
+707 (k - d(k)Sx(k —d(k)) -2 o (k= i)Sxk = )]

i=l

< —AV (x(k)) =V (x(k)) =V (x(k +1)). (13)

Summing from ¥=0 to = on the two side of the
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inequality (13) leads to

oo

3 (0Qx(k) SV (H0) =V (x(eo)).

k=0

(14)

Since the quadratic stability of the system has

alreadv  been  established, we conclude that
Vx(kp >0 as k-, Hence, inequality (10) is
satisfied. [ ]

The following theorem gives a characterization of
all quadratic cost matrices in terms of LML
Theorem 2: A positive definite matrix P is a
the

quadratic cost function (5), and the given values,

quadratic cost matrix for the system (1),

m>0 and 0<t<l if there exist a positive definite
matrix § and a parameter & >0(i=1,2), such that
the following LMl is feasible:

[-p+Q+ms 0 A 0 o E 0 0 o ]
0 -5 A 0 0 0 E 0 0
A A, -P7 H H, 0 0 0 0
0 o H LI 0 0 0 0
£
0 o H o -0 0 o o o |<¢
£
E, 0o 0 0 0 gl O 0 0
0 E, 0 0 0 0 -&l 0 0
0 o 0 0 0 0 0 -®, @,
0 0 0 0 0 o &, -1'o,|
(15)
Proo :

Using Lemma 1, it follows from (8) that

-P+0Q+mS 0 AT © 0
0 -5 Al 0 0
Ak) Ay -P 0 0
0 0 0 -®, o,
0 0 0o ®, -t'e,
[-P+Qo+ms 0 AT 0 0o |
0 - AT 0 0
= A A, —-P' 0 0
0 0o 0 -®, @,
L 0 0 0 o, -t'o,|
[~P+o+ms 0 A7 0 0 ]
0 -5 A} 0 0
= A A -P' 0 0
0 0 0 -®, &,
L ¢ 6 6 @, -t'e,|

(365)
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o 0 AT 00
0 0 A4k 00
Ay A 00 000
0 0 0 00
L 0 0 0 00
[0 0 ETFT(HT 0 0
0 0 EJFT(OH] 0 0
+|H FE, HiF(KE, 0 0 0/<0.
0 0 0 00 (16)
) 0 0 00
From (16), using lemma of Petersen'” we have
inequality (17).
—P+Q+mS 0 A" ] 0
0 Y 0 0
A A, -P7 0 0
0 0o 0 -®, o,
0 0 0o o, -t'0,
0 ET
0 Lo
+e,H,b0H,”oo]+~o[E,oooo]
0 fil o
0 0
0 0
0 . EY
+&, Hz[() 0 HI o© 0]+— ollo £, 0 0 o]<o. (17
0 21
0 0

From (17) and Lemma 1, we obtain the inequality
(15). ]

From Theorem 1 and 2, we can solve the problem
designing the memoryless state feedback control law
such that the closed loop system is not only
quadratically stable but also guarantees an adequate
level of performance for all admissible uncertainties.
design the state feedback

controller using some changes of variables and Schur

Therefore, we will

complement.

. Robust Guaranteed Cost Control

We consider the discrete-time uncertain system
with time-varying delay described by the difference
delay equation,
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Sk 1= AGK)x(k) + Ay (K)x(k — d (k) + B )u(h)

= (A+ AAGK))x(k) + (A +AAD)X(k —d (k)

+ (B + AB(k)u(k),

xky=¢k), ~m<k<0, (18)

where xkh)eR" is the state, wbe®R’ is the control
input, the time-varying delay dke® is the positive
integer satisfying (2), and ¢%) is an initial value at
k. AeR™ A eR™  and Be®R™  represent
constant matrices with appropriate dimensions, and
AAKYE R A (KER™ | and  AB(ke K™ denote
real-valued matrix functions representing parameter

uncertainties satistying

AAGK) = H\F(OE,, AA (k)= H,F()E,, AB(K)=H F(k)E,,

(19)

where HIGW"XP, l'=l,2, E‘-Eg{qxn,

Eie R are known constant matrices with appro-

l'=1,27 and
priate  dimensions, and FOeR™ is unknown but
normy-bounded as inequality (4). It is assumed that
all states are measurable for state feedback.
Associated with the system (18) is the quadratic

cost function :

J= Z[XT *)Qx(k) +u” (k)Ru(l\')]

k=0

(20)

where @>0 and R>0 are positive definite matrices.

Definition 2:For the system (18)
function (20), a state feedback control law u(k)=Kx(k)
is said to be a quadratic guaranteed cost control

and the cost

with the cost matrix P>0 if there exists a positive
definite matrix § such that the following LMI is
feasible :

AL (k)PAy (k)— P +Q +mS + KRK
Al (k)PA (b

AL (k)PA, (k) 0 0
ATOPAT (k)-8 0 0

<0,
0 0 -0, o,
0 0 o, -w,
(21)
where A¢(®) is defined as follows :
Ag (k)= Ath) + B(OK. 22)
n

(366)
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From Definition 2, we will design the state
feedback controller such that the closed loop system
(18) only quadratically stable but also

guarantees an adequate level of performance.

IS not

Theorem 3: Consider the system (18) with the cost
function (20). There exists a state feedback controller
u(ky=Kx(k) if there exist a positive definite matrix
P, S, a matrix M and a parameter & >0.(/=L2)
such that the following LMI is feasible:

[ -p ptPY M0 PATAMTB
P -m'sT 0 0 0 0
P o -0 0 0 0
M 0 0 -R" O 0
0 0 0 0 -1 Al
AP +BM 0 0 0 A4 -p!
0 0 0 0 0 H
0 0 0 0 0 H!
EP'+EM 0 0 0o 0 0
0 0 0 o 0 E
0 0 0 0 0 0
L o 0 o o 0 0
0 0 P'E+MTE] 0 0 0o ]
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 E} 0 0
H, H, 0 0 0 0
LI 0 0 0 0 <o,
SI
A 0 0 0 0
€,
0 0 ~gl 0 o 0
0 0 -&l 0 (%)
0 0 0 0o -®, o,
0 0 0 0 @, -t’'0,]

where M =kpP~'. Moreover, the cost function satisfies
the bound,

m -l
1< @Px@)+ Y, 5T (HSs(h.

i=1 j=~i

(24)
Prodof -

Proof is omitted.

IV. Example

Consider a discrete time-varying delay systemm,
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D (0.95 0.78 . 01 02 ) 02 0.17 "
Ry = (|
{{o76 a.87] {009 01 0.15 0.12 )
0.12 0.09] [o.11 0197  [0.08 0.05
+ + F(k) (A —d (k)
Ho.n 0,07} {0.1 0.09} [0.6 0.07D
. 0s] for o2 k) 0.1 ®
045 1009 0.1 0.09 )

(25)
where m=6. Associated with this system is the
quadratic cost function (20) with

0.1 005
o

. R=005 1=099,
005 0.09

(26)

Applying Theorem 3, we obtain that the system is
robustly stabilizable for
:[0.4897 0.3459}

0.3459  0.3678
£, =2.459, ¢&,=25784,

_[0.0319 0.0214

. M=[-11652 35647
0.0214 0.0163] [ }

(27)

4

and the cost function satisfies the following bound
J<1.4042. Therefore, we obtain the quadratic cost

control :

K=[18036 -1.7143]

V. Conclusion

In this paper, we presented the guaranteed cost
control problem of a class of discrete-time linear
uncertain  systems  with  time-varying delay and
proposed the existence condition and the design
method of the memorvless state feedback control law
only

quadratically stable but also guarantees an adequate

such that the closed loop system is not
level of performance for all admussible uncertainties.
The assumption of state availability is made, while
in some problems only output information is
available. The guaranteed cost output control problem
of the discrete-time linear uncertain systems with

time-varying delay will be addressed.
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