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Decentralized Output Feedback Robust Passive Control for Linear
Interconnected Uncertain Time-Delay Systems

Duk-Sun Shim

Abstract: We consider a class of large-scale interconnected time delay systems and investigate a decentralized robust passive control
problem. Sufficient conditions for unforced interconnected uncertain systems with time delay to be robustly stable with extended
strictly passivity is given in terms of algebraic Riccati inequality and linear matrix inequality. The decentralized robust passive con-
trol problem for norm-bounded and positive real uncertainty is shown to be converted to extended strictly positive real control prob-
lem for a modified system which contains neither time delay nor uncertainty.
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L Introduction

Decentralized control of large-scale interconnected systems
has been an important topic more than two decades(see
[1,3,7,9,10] and references therein). Much concern for the
decentralized control comes from the fact that many control
problems of modern industrial society are associated with the
control of complex interconnected systems such as electric
power systems, transportation systems, chemical process sys-
tems etc. The concept of decentralized control is that control
inputs for local systems use local measurement only such that
the stability and performance of the whole interconnected
system should be guaranteed. During the last decade, consid-
erable attention has been paid to stability analysis and control
problem for time delay systems(see references of [12]), and
recently more attention has been devoted to uncertain systems
with time delay. This trend also has been applied to the decen-
tralized control problem. Many research has been done on
decentralized control problem for interconnected systems
which contain time delay[3], uncertainty[1,10], and both time
delay and uncertainty[9]. The objective of decentralized robust
control problem is to obtain closed-loop stability in spite of
uncertainty and time delay, and additionally H, norm-
boundedness between disturbance and controlled output[9,10].
For systems with time delay and uncertainty, there are some
research for positive real (or passivity) control. Xie et. al.[11]
focuses on positive real control of linear time-invariant sys-
tems with norm-bounded uncertainty and shows that the solu-
tion can be obtained by solving a scaled strict positive real
control problem. Mahmoud[4] investigate the robust passivity
synthesis problem for a class of uncertain time-delay systems
and provides a sufficient condition for the uncertain time delay
system to be robustly stable and strictly passive for all uncer-
tainty in terms of linear matrix inequality.

In this paper we consider linear interconnected uncertain
systems with time delay. The uncertainty may be norm-
bounded or of linear fractional form of positive real uncer-
tainty. The objective of the problem is to design output feed-
back decentralized controller such that the whole intercon-
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nected system is robustly stable and the system from the dis-
turbance to controlled output is extended strictly passive. A
sufficient condition for unforced interconnected system to be
robustly stable with extended strictly passivity is given in
terms of algebraic Riccati inequality and linear matrix inequal-
ity. The decentralized robust passive control problem is shown
to be converted to extended strictly positive real control
problem for a modified system which contains neither time
delay nor uncertainty.

The concept of passivity or positive realness has played im-
portant role in system stability and control theory. The main
motivation of studying the passivity or positive realness comes
from robust and nonlinear control problem. It is well-known
that closed loop stability is guaranteed by means of negative
feedback with strictly passive compensation for passive plant
even though the plant has uncertainty or nonlinearity.

In Section II, decentralized robust passive control problem
is formulated. Analysis result is given in Section III, and de-
centralized robust stabilization for norm-bounded uncertainty
and linear fractional form of positive real uncertainty is given
in Section IV and V respectively. Conclusions are given in
Section VI.

I1. Problem formulation and definitions
Consider large-scale linear systems consisting of N subsys-
tems containing time-varying uncertainty and unknown time
delay as follows:

x; (1) = (4; + 84;(0))x;(2) + By w; (8) + (By; + ABy; () (1)

N
+ Z(A,j + A ()t~ Ty) )
=L
2; () = Cyyx; (8) + Dyyyw; (8) + Dygu;(2)
Yi(#) = (Coi + AC ())x,(2)
+D1w; (1) + (Dyg; + ADyy; ()5 (D =i (1), 10

where for i=1,2,..N, x;{t)eR"™ is the state, w;(t)eR¥
is the disturbance, u;(f)eR™ 1is the control input, and
4;, B, By, €1y, Cop, Dyyis Digy» Dy, Dyp; - and - 4y are
known constant matrices of appropriate dimensions, Ty is
time delay from j-th subsystem to i-th subsystem which is
unknown but constant. Assume that the parameter uncertain-
ties AA4;(1),ABy; (1),AC,;(1),ADy); (1) and A4;(¢) have the
following forms:
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[ A4;(t)  ABy (1) }

| F FEE; Ey] ()
ACy; () ADyy;(2) PR T

Ly,
My (6) = HyFy (1) 2b)

where Ly, Ly;, Ey;, By, Hyjand Jj;are known constant ma-
trices of appropriate dimensions. For the time-varying uncer-
tainty matrices Fj(f) and Fy(2), which are Lebesgue meas-
urable, we consider two cases of uncertainties as follows:

i) /T @0F@<L BT OF) <1, v1,9i,j € {1.2,..,N} (3)

i) F(0)=F(00I+DF ()7L, Fii(0) :F—y‘(t)(l‘*'Dij_FTij_(t))_l
4)
— —T — —T

where Fi(t)+F; (120, F;(0)+F; (1)z0, V4V je
{1,2,..,N} and D;and D; are constant known matrices
with D, +D] >0, Dy +D,§L >0.

We will consider uncertainty (3) in Section IV and uncer-
tainty (4) in Section V, respectively.

The decentralized robust passive control problem we con-

sider in this paper can be described as follows:
Design a decentralized linear output feedback control-
ler Go(s)=diag{Ge,.Gc, .G, } for system (1) with
uncertainty (2) such that with u; =Gg (s)y;, i=1,2,...,N, the
resulting closed-loop system is robustly stable and the system
T,w, from w; to z; is extended strictly passive for any
nonzero w; € L,10,0) and for all admissible uncertainties.
The notion of extended strictly passive and extended strictly
positive real is defined as follows.
Definition 1: A dynamic system is said to be passive if

J' C T Owdt > B, Vwe Ly[0,00)
0

where z(t) and w(t) are the output and input of the system
respectively and S is some constant. A system is said to be
extended strictly passive(ESP) if it is passive and
D+DT >0 where D is the feedthrough matrix from w to z.

Definition 2[8]: A system is said to be extended strictly
positive real(ESPR) if its transfer function G(s) is analytic in
Re(s)>0 and satisfies G(jw)+G (jw)>0 for w e[0,00].

We introduce some matrix inequalities which will be used
to obtain main results.

Lemma 1[10] : Let L, F, E and G be real matrices of ap-
propriate dimensions with F7 F <1 . Then

(i) For any scalar £>0,

LFE+ETFTLT <all” +¢7'ETE
(ii) For any scalar £>0 suchthat ¢éETE<1,
(G+HFING+HFNT <GU-g7Tn'GT +¢ 'HHT .

The following lemma gives an equivalent condition for
ESPRness of an LTI system in terms of algebraic Riccati
inequality(ARI) and linear matrix ineqality(LMI) condi-
tions.

Lemma 2[8] : Consider the linear time-invariant system
T: x=Ax+Bw,z=Cx+Dw.

The following statements are equivalent.

i) The system X is ESPR and A is stable.

i) D+DT >0 and the ARI

ATP+PA+(C-BTPYT(D+DTY (C-BTP)<0 has a
positive definite solution P.

iii) D+ DT >0 and the LMI

ATP+pP4 (C-BTP)T
(c-B"P)y —(D+DT)

tion P.

J< 0 has a positive definite solu-

II1. Robust stabilization with extended strictly pas-
sivity

In this section we consider the analysis result of the decen-
tralized robust passive control problem for system (1) with
uncertainty (2) and (3).

Consider partially interconnected system in which only
some parts of states in a subsystem affects other subsystem.
For example, when we use decentralized output feedback con-
trol, the original states of a subsystem affect other subsystem,
but the states of controllers do not. We call the states which
affect other subsystem active states, the states which do not
affect other subsystem passive states. For convenience, we
decompose the states x;(t)e R™ of i-th subsystem into ac-
tive states x; (YeR™ and passive states X, (HeR™

. T T
with x;(#)= i X, and n; +n; =n;.
Consider the following partially interconnected unforced

system described as (5):

N
X (1) = Apx; (1) + Byyw; () + ZAijxj, -z )
J=Lj#i
z;(t) = Cyx; (1) + Dyyw; (1)

The following theorem provides sufficient ARI conditions
for the partially interconnected system (5) to be asymptotically
stable with ESP.

Theorem 1 : Consider the interconnected system (5). Sup-
pose that Dyy; +D1T1,- >0 and if the matrices 4;, for
i=1,2,...N, are stable and there exist real symmetric matrices
P, >0 suchthat fori=1,2,...N,

N
AT P+ Py + RO A AT + (Cy = BT (Dyy; + Df, )

oL

A |:Ii1 0 :l
*(Cy =B B)+(N-1) <0 (6)
0 0,
where 1; € R"™ i an identity matrix, 0, € R"™™2 is a
zero matrix, and N is the number of subsystems, then the in-
terconnected system (5) is asymptotically stable with ESP.
Proof : To prove asymptotic stability of the interconnected
system (5), we assume w;(f)=0. Let the Lyapunov function
of interconnected system be

v (x,t>=i xf (t)Pix,»(tHi i j x} (0)x) (0)do
i=1 i

i=l  j=lj#i

We obtain the derivative of V(x,t) with respect to time as
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follows.

N
Pe= Y sl O] P+ P
i=1

=

N
+Z Z{x (@~ )AL P+ <] (0P, Ay (=)}

i=1 j=1,j#i

N N

+ Z Z{XJT.I Ox; ©=x] (=), (=)

i=1 j=1,j#i

N
<= oy - BT D1y + D1y €l - B RIxi (1)

i=

N N

= D= m) = AT By (e) G (= my) = 4] Pixy(1) <O

i=t j=1,j#i

The inequality above comes from ARI (6) and ¥ (x,r) <0
holds always for all x;(¢)=0. Thus the partially intercon-

nected system (5) is asymptotically stable by the well- known
Lyapunov stability theorem.
To prove the ESPness of interconnected system (5), let

J =I 227 ()w(#)dt . Under zero initial condition, we obtain
0

after some manipulation using ARI (6)

N o0
J= 2,7 (d
Zjo =T Ow (0t
N . d
=2 | e owo- 26T oRx @
7o dt

N o0 Av
> ;jo nl ((Dy; +D1T1i)’7i(’)+;cfr(t)§(t)}dz -0

where 7,(t) = w; (1) +(Dyy; + D1;) ™ (Cy; - B B)x;(0),
E()=x, (t—7y)— Af Px;(2).

We have D,,; +Dj};>0 from the assumption, thus the in-
terconnected system (5) is asymptotically stable with ESP by
the Definition 2. ]

Remark 1 : The condition that there exists a real symmetric
matrix F; >0 satisfying ARI (6) is equivalent to the
ESPRness of the following system:

x=Fx+Gyv
z=Hx+Jy

where F, = 4;,G;=[B,; B; 0],BBl =

544

J=lj==
Dy O 0
11 ) Cli
Ji=l 0 —=I 0| andH,;= 0 .
i 9 i
1 N—l[]il 0]
0 0 =17
2

1. ARI condition
Consider the following partially interconnected uncertain sys-

tem as follows:

N
50 = 4+ LR ERS O+ B0+ D (A + Hy T, 1= )
oL
z; () = Cpyx;(0) + Dy yw; (1) O]

where uncertam matrices f; and Fj; are norm-bounded, i.e.,

F'F <1, FJF; <
1 and Lemma 1, we obtain the sufficient condition for the
interconnected uncertain system (7) to be robustly stable with
ESP.

Theorem 2 : Consider the interconnected uncertain system
(7). If the matrices 4;, for i=1,2,...,N, are stable and condi-
tions (i) through (iii) below are satisfied, then system (7) is
robustly stable with ESP.

i) Dllz +D111 >0

i) /1 Jij J <I

iii) there ex1st real symmetric matrices P >0 and parame-
ters &; >0and lij >0 such that fori=1,2,...,N,

<1 . According to the results of Theorem

N
Z(A (U-2Bsfan7 4l

j=l e

ATP + P A; + P&l L LT, +

1 _ 1
+ = HyHDE +(Cy = BER)T (Diyy + D)™ (Cyy ~ BER) + 5 EVE
y i

+(N—1){0 00}0 (8)

Proof : According to Theorem 1, a sufficient condition for
system (7) to be robustly stable with ESP is that there exist
real symmetric matrices £ >0 such that for i=1,2,...N,

(4 + LyFE)T B+ P4, + LFE) + P

N
(D Uy + HyFyd )y + HyFyJ )}
j=1,j#i

0
+(Cii= BB (D= D) Gy - B B)+ (Y - 1){0 0. }<o ®
From Lemma 1 we obtain the following inequalities

E{F L[;P, + PLF,E; < 8] L, L;P +— LETE, (10)

i

(4 + HyFyJy)( Ay + HyFyJ )T < Ay(1 - A205 )7

1
— HyH} (11)

i

A,-jT»+

Applying (10) and (11) to (9), we obtain that

Left side of ARI (9) < Left side of ARI (8) < 0. This
completes the proof. [ |

Remark 2 : The condition that there exists a real symmetric
matrix P, >0 such that satisfies ARI (8) is equivalent to
the ESPRness of the following system

& =Figi + G
z; =H; & +Jv;

where,
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_ c, -
0
- __[ B l—_ 0
F;=4,G;=[B; &Ly Bi 0 0|,H;= 1 ’
—Ey
i
N-1r;, 0]
Ji=dzag{D“,,21 21 2] 21} and

z (A -22J] JU)“AT+LH HT)
22

J=lj#i ij

2. LMI condition

Consider the partially interconnected uncertain system (7)
with norm-bounded uncertainty F/F; </, F]F;<I.In
this sub-section we obtain the sufficient condmon for the in-
terconnected uncertain system (7) to be robustly stable with
ESP using LMI technique.

Theorem 3 : Consider the interconnected uncertain system
(7). If the matrices 4;, for i=1,2,....N
real symmetric matrices F; >0 and real parameters ¢&; >0
satisfying the LMI below, then system (7) is robustly stable

with ESP.
Q Q
1 <0 (12)

, are stable there exist

Q; Q3

where Q, =47 P +P4;,

; 1
Q2=[(Ci_BliPi)T zPi[Lli Hi] F 4

R

, 1 ——
Q3 =diag{~(Dyy; + D{\))—~1~T +—=J;J

i
&

T
:_1>_I}

A; =[Ay Ay - Ay Ay - A ]
H; =[HyHp -Hy;_yHigy - Hyl
Jy =diag{Jn,Jins iy Jigany St

Proof : According to Theorem 1, a sufficient condition for
system (7) to be robustly stable with ESP is the existence of
real symmetric matrices P, >0, i=1,2,... N, satisfying the
ARI (9), which is equivalent to the following LMI,

Tp P4 ol 0 wr _pTpAT
Ai B+ R4+ (N 1)0 0 +I1 B4+ (C;—-Bi F)

A= 4i P, +T] -1 0 <0

(C;-Bl'P) 0 -y +DL)

where T, = ELF{LL.P. + PL,F,E;; and
T, = B[LyFy By LivFivEuy]

Matrix A can be decomposed into two parts, one having no un-
certainty and the other having uncertainty, A = A; + A, where
Al B+ Pody +(N—1)L’) g} R (Ci-Bl BT
A= %P -1 0 and
(c;-BI'p) 0 -y +D])

(I, T, 0
A=TT 0 o
L0 0 0

Substituting I and I', in A, , we obtain from Lemma 1,

oo LA oTE O]
Ar=|""0o o0 FJO0 Ej|
I 0 0
- _ o T
P L, L; £ 2 E; 0
o 0|0 FJo E
L O 0_-
r -1 1 B . T
Sif?[Lli Li] ;—Eﬁ 0 /oo P[le Li] —&; 0
< 0 o LElo s 0} 0 o 1%
i &
0 0 0 JLO 017 0 0 0
for some ¢; >0.
—] 1
a,P,»[Lli L,-] ;—Elf 0 Lo e
1
Let Ay= 0 0 LE| and Ag={0 7 0
&i
0 0 0 0 0 [/

If there exist matrices Z >0 and parameters & >0
such that A, +A3A4A73w <0, then system (7) is robustly
stable with ESP. We can obtain LMI (12) by arranging
Ay +A3A4AS <0 and using well-known Schur inequality.

IV. Decentralized robust stabilization for norm-
bounded uncertainty

In this section we present decentralized robust output feed-
back controllers for the interconnected system (1) and (2)
containing norm-bounded uncertainty (3), F,—T OF; () <1,
FT(0F; (<1, V1,Yi,je{12,.,N}.
1. Output feedback control from ARI

Consider the following modified system from system (1)
and (2) with uncertainty (3).

n; = A +[Bli &Ly, E 0 O] ;i'*'BZiui

Cui Dy 0 0 0 0 Dyy;
0 0 051 0 0
zi=| 0 | 0 051 0 Pyt O
—Ej; 0 0 051 0 —Ey;
£ &
Vo1 0 0 0 051 0
(13)
vi=Cum+[Dyy &Ly 0 0 Ofw, + Dy
N
where BT = N (4,1~ BTy AT+ HyHD)
J=Lj=i j'U

The following theorem is one of main results in this paper,
which shows the decentralized robust stabilization with ESP
for interconnected system which contain norm-bounded uncer-
tainty and time delay using ARL

Theorem 4 Consider the interconnected system (1) with
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uncertainty (2) and (3). This system is robustly stabilizable
with ESP via decentralized strictly proper output feedback
controller G (s)= diag{Gc, (5),Gc,(5),...Gc, ()} if for
i=1,2,..,N, there exist parameters &; >0 and ll-j >0 such that

i) Dyy;+Diy; >0

i) /l J T Jy<d

ii1) each closed-loop system of system (13) with control law
u; =Ge,y; is ESPR.

Proof : Suppose that for i=1,2,...,N, the controller from i-
th subsystem has the following realization

xc, () = Ac,xc, () + B¢ i (1)

14
us (1) = C ¢, (0 (14

where x- e R" is the state of the controller of the i-th sub-
system. '

The closed-loop system of the i-th subsystem (1) and (2)
with the controller (14) is given by the following equation

&(0) = (4 + Ly, FyEy)&; (6 + Byywi(2)

N
+ Z(A,-j +HyFy

J_ij)ﬁfjl(t‘fij (15)
J=l,j=i
2,() = Cyi&; (1) + Dy yyw; (1)
where
xi(t) n i+,
é:i :[XC,. (t):l 5]1 xj(t) >

i- 4; By Cc, T Ly;

" | B Gy Ac, +BeDpiCe, | YT Be Ly |
— — By; — | 4.
Ey =[E1i EziCc,.], By; =[BC Dlﬂ} s Ay =[ 6]} )

/ i

— [H.] — _
Hij:|: OU} Ji=Jy, Cli'_‘[cli DlZiCC,-]

Consider the closed-loop system of modified system (13)
for i-th subsystem with the controller (14), which can be de-
scribed by the following equation.

X; = Aix; + Bw,
. . (16)
z; =Cix; + Dyw;
. By, el; B 0 0
where Bi: 1 i1 i ,
BC,-DZIi giBC,»LZi 0 0 0
Cy; DyyCe,
0 0
¢ = 10 | 0 ’
—Ey; —EyCg
£ £

i i

VN-1 0

D, = diagiDyy;,~ 1,11,

1I I} and
2772772

2 a7, 1 T
Z (A ~22aF 7)) 4] +;2—Hin,-J-)

J=lj=#i ij
Since system (16) is ESPR, we obtain from Lemma 2 that

b,- +DA,T >0 and there exists a symmetric matrix F‘_>0
such that

-B[R)<0
(17

AT R+ P4 +(C - BI BYT (D, + D) (C;

ARI (17) can be rearranged as follows
‘az‘TFi"'Fi/}i +FIC~;Z(~}ITFZ
_— i
+(Cy; = BuPi) (Dyy; + D)™ (Cy; — Bii Pi)

0
+€—E11E1,+(N—1){0 0, }<0
i Ci

(18)
where
e I A —-T— =T 1 = —T
G,GT =e2LiLii + Z Ay U-A2T5T5) " 4y +l—2H,<,~H,~,)
J=1 i if

Note that Dj;+D[; >0 and from condition ii)

24T Ty,
25 Jyy <I we obtain that ,{2JUJU=,1§,[JUOJ:] 0}<1

According to ARI (18) and Theorem 2, the interconnected
system (15) is robustly stable with ESP. Therefore the inter-
connected system (1) with uncertainty (2) and (3) is robustly
stabilizable with ESP via decentralized strictly proper output
feedback controller which is used for the augmented system
(13) such that the given closed-loop system is ESPR. B

Remark 3 : Theorem 4 says that the decentralized robust
passive control problem for interconnected system with uncer-
tainty (2) and (3) can be solved in terms of ESPR control
problem for N modified decoupled linear systems which do
not contain uncertainty nor time delay. Refer to [8] for the
solution to the ESPR control problem and [5] for removing
the " D,, ” term.

2. Output feedback control from LMI

Consider the following modified system from system (1)

and (2) with uncertainty (3).

;= A1 +[Bli & [Ln HiJ 4 0 O:' v; + By
Cy; Dy 0 0 0 0
0 0 057 0 0 0
1 - -1 _
z; = 10 n; + 0 0 0.5(1——7.]1'.]1) 0 0 ;
—E. €
o 0 0 0.5/ 0
N-1/ 0 0 0 0 057
Dy,
0
+ 0 |y 19)
—Ey
£
0

yi=Cyri #[Dayy &[Ly; 0] 0 0 0]v;+ Dy,
where

A; =[454;7 - Ay Aiany - Ain ]
H;=[HyHy - Hy;_yHigy - Hiyl,

Jy=diag{Jn. I, Sy iy JIiv
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The following theorem is one main result of this paper,
which shows the decentralized robust stabilization with ESP
for interconnected system which contain norm-bounded uncer-
tainty and time delay.

Theorem 5 : Consider the interconnected system (1) with
uncertainty (2) and (3). This system is robustly stabilizable
with ESP via decentralized strictly proper output feedback
controller Gc(s)zdiag{GC] (s),GC2 (s),...,GCN (s)} if for
i=1,2,...,N, there exist parameters &; >0 such that

i) Dy, +D],;>0

i) 7,7, <1
&

iii) each closed-loop system of system (19) with control law
u; =Gey; is ESPR.

Proof : The procedure of the proof is similar to that of
Theorem 4 and thus the proof is omitted. [ |

Remark 4 : System (13) and system (19) are scaled sys-
tems which come from by using ARI and LMI, respectively.
They have similar forms and system (19) has larger dimension
than system (19).

V. Decentralized robust stabilization for positive real
uncertainty
In this section we present the decentralized robust output
feedback Controller for the interconnected system (1) and (2)
containing positive real uncertainty (4),

Fi(©)=FOU+D;F;0)™", Fy(t)=Fy(0)J + Dy Fy ()"
Lemma 3[6] : Consider the uncertainty set F

F={F=FU+DF)":D+D" >0,F+FT 20,F e ™"
(20

Then the F is equivalent to the set é

1 1
0=10=+D") 2 +o0+DT) 2:09Tg<1,0e ™™,
1 1
det(/-(D+DT) 2(1+Q)D+DT) 2D)20} (21)

In (20), F is also positive real, ie., F+FT >0 [2].
Lemma 3 shows that positive real uncertainty in the linear
fractional form of positive real uncertainty as in (20) can be
transformed to the uncertainty in the form of (21) given in
terms of norm-bounded uncertainty.

Consider the interconnected system (1) and uncertainty (2)
and (4). Applying Lemma 3, we obtain the following inter-
connected system which contains norm-bounded uncertainty.

%(8) = (4; + LyQ;Ey )x; (6) + Bywi () + (By; + LyQi Equ; (1)
N
+ Z(A,.j + Hy Q) (1) 22)
J=1,j#i

z;(t) = Cpx; (8) + Dy w; (8) + Dypyu (1)

Yi(6) =(Coy + Ly 0, Ey)x; () + Dow; (8)+ (Dag; + Lo Qi Eny u; (1)

where

A B, 4, By, Ly
A By ={ o ]+[ . :!(Di'*'DiT)_][Eli Ey],
C2i D22i CZi D22i L2i

~ 1
Ly | | Ly N Ty-1
Z { ljl(Di +D]) 2, 4y = Ay + Hy(Dy + D)) Iy,

Ly | Lo

L
T
(£ Exl=0;+D]) 2[E, E,],
1 1

~ - ~ T -
Hy=Hy(Dy+D}) 2, J; =Dy +D}) 2.
Consider the following modified system for system (22).

i = 4ig; +[Bli &ly B 0 0] Wi+ By

i Dyy; 0 0 0 Dyy;
0 0 051 0 0 0 0 23)
_lo 5 0
=% e+ 0 0 o5 0 [+l 0
—Ey 0 0 05/ 0 —Ey;
&; &;
Nl 0o 0 0.5 0
¥i=Coigi+[ Dy &Ly 0 0 0] + Dy
g 1
= 5T > 2575 13T 5 OST
where 7 5T = Z Ay~ 22T T A - HyH
j=1,j#i i

Theorem 6 : Consider the interconnected system (1) with
positive real uncertainty (2) and (4). This system is robustly
stabilizable with ESP via decentralized strictly proper output
feedback controller Ge(s) = diag{Gc, (s), G, (5),-- G, ()} If
for i=1,2,...N, there exist parameters g >0 and il-j >0
such that

i) Dy;+Df); >0,D;+D] >0,D; +D] >0

i)y AZJTT, <1

iii) each closed-loop system of system (23) with control law
u; =Gc,y; is ESPR.

Proof : Theorem 6 comes from theorem 4 directly and thus
the proof is omitted. | |

VI. Conclusions

This paper considers decentralized robust passive control
problem for large-scale interconnected uncertain systems with
time delay. The uncertainty may be norm-bounded or of linear
fractional form of positive real uncertainty. We address the
problem of designing a linear output feedback controller such
that the whole interconnected system is robustly and the sys-
tem from the disturbance to controlled output is extended
strictly passive. It is shown that the decentralized robust pas-
sive control problem can be converted to extended strictly
positive real control problem for a modified system which
contains neither time delay nor uncertainty.
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