• Title/Summary/Keyword: linear Matrix Inequality

Search Result 483, Processing Time 0.029 seconds

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF

Robust $H_{\infty}$ Control of Uncertain Descriptor Systems With Time-Varying Delays

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.199-204
    • /
    • 2002
  • This paper is concerned with H$_{\infty}$ controller design methods for descriptor systems with and without time-varying delays in state and control input. The sufficient condition for the existence of an H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality (LMI), singular value decomposition, Schur complements, and changes of variables. Since the obtained sufficient condition can be changed to an LMI form by proper manipulations, all solutions including controller gain can be obtained at the same time. Moreover, it is shown that robust H$_{\infty}$ controller design problem for parameter uncertain descriptor systems with time-varying delays in state and control input can be solvable using the proposed method.

$H_{\infty}$ Fuzzy State-Feedback Control Design for Uncertain Nonlinear Descriptor Systems;An LMI Approach

  • Assawinchaichote, W.;Nguang, S.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1037-1041
    • /
    • 2004
  • This paper examines the problem of designing an $H_{\infty}$ fuzzy state-feedback controller for a class of uncertain nonlinear descriptor systems which is described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an $H_{\infty}$ state-feedback controller which guarantees the $L_2$-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for this class of systems. A numerical example is provided to illustrate the design developed in this paper.

  • PDF

Robust observer-based $H_{\infty}$ controller design for descriptor systems using an LMI

  • Kim, Jong-Hae;Lee, Joong-Jae;Ahn, Seong-Joon;Ahn, Seung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1843-1846
    • /
    • 2004
  • This paper considers a robust observer-based $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties using just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by a perfect LMI condition in terms of all variables using singular value decomposition, Schur complement, and change of variables. Therefore, one of the main advantages is that a robust observer-based $H_{\infty}$ controller is found by solving one LMI condition compared with existing results. Numerical example is given to illustrate the effectiveness of the proposed controller design method.

  • PDF

Design of Dual-Rate Fuzzy Model-based Digital Controller Using Intelligent Digital Redeisgn

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1289-1294
    • /
    • 2003
  • This paper proposes a novel and efficient intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system. The term of intelligent digital redesign involves converting an existing analog fuzzy-model-based controller into an equivalent digital counterpart in the sense of state matching. In this paper, we suggest the discretization method based on the dual-rate sampling approximation is first proposed, and then attempt to globally match the states of the overall closed-loop TS fuzzy system with the pre-designed analog fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller. To show the feasibility and the effectiveness of the proposed method, a computer simulation is provided.

  • PDF

Constrained MPC for uncertain time-delayed systems

  • Jeong, Seung-Cheol;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1905-1910
    • /
    • 2003
  • It is well known that parameter uncertainties and time-delays cannot be avoided in practice and result in poor performance and even instability. Nevertheless, to the authors' best knowledge, there exist few results on model predictive control (MPC) handling explicitly uncertain time-delayed systems. In this paper, we present an MPC algorithm for uncertain time-varying systems with input constraints and state-delay. An optimization problem is suggested to find a memoryless state-feedback MPC law and the closed-loop stability is established under feasibility and certain conditions.

  • PDF

[ H2 ] Control of Uncertain Systems with Actuator Saturation (구동기포화를 갖는 불확실한 시스템의 H2 제어)

  • Choi, Hyoun-Chul;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1000-1006
    • /
    • 2007
  • This paper presents an LMI-based method to design a saturated state-feedback $H_2$ controller for uncertain systems with actuator saturation. Specifically, the paper proposes a sufficient condition such that the system under norm-bounded uncertainties and actuator saturation is asymptotically stable and the $H_2$-norm of the system has an upper-bound. The resulting condition is further utilized to solve a convex optimization problem specified in the context of $H_2$-norm minimization, whose solution yields a saturated $H_2$ controller. A numerical example is presented to show the effectiveness of the proposed method.

LMI-based Design of PI-type H∞ Controller for Poly topic Models (폴리토픽 모델을 위한 PI 형 H∞ 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.255-257
    • /
    • 2009
  • The robust stabilization problem of a multivariable uncertain system with a polytopic model is considered. A PI-type $H_{\infty}$ controller with a low pass filter is used for robust stabilization and noise rejection. The problem is reduced to an LMI optimization problem. A sufficient condition for the existence of the PI controller is derived in terms of LMIs. The PI gain matrices are parameterized by using the solution matrices to the existence conditions. Finally, a numerical design example is given.

Robust Feedback Control Design for a Three-phase Grid-connected Inverter in Distributed Generation System

  • Lai, Ngoc Bao;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.491-492
    • /
    • 2016
  • This paper presents a robust feedback control design to mitigate the effect of grid voltage disturbances for three-phase grid-connected inverters in distributed generation systems. The proposed strategy consists of two major design steps. First, the controller is synthesized using the internal model principle to achieve a good reference tracking and disturbance rejection performance. Then, the feedback gain is systematically obtained by solving the linear matrix inequality conditions which are directly derived from the stability criteria. The main contribution of this paper is that the complexity of control structure can be substantially reduced and transient response is improved as compared with the existing robust control design methods. The simulation results are given to prove the validity of the proposed control scheme.

  • PDF

All Stabilizing Disturbance Observer Design for Precise Position Control (정밀 위치제어를 위한 상안정 외란관측기 설계)

  • Suh, Sang-Min;Kim, Ha-Yong;Kim, Kyung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.710-716
    • /
    • 2010
  • This note represents a new disturbance observer to reduce effects of external disturbances. In case of conventional disturbance observers, additional stabilizing filters, so-called Q-filter, should be used because the conventional ones don't guarantee stability. But, the proposed one doesn't need the stabilizing filter, which is a fundamentally different research result from previous methods. Experimental verifications show this approach is realizable and valid to enhance precise positioning.