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Guaranteed Cost Control of Parameter Uncertain Systems
with Time Delay™

Jong Hae Kim

Abstract : In this paper, we deal with the problem of designing guaranteed cost slate feedback cantroller for the generalized
lime-varying delay systems with dolayed slale and control inpul. The generalized time delay system problems are solved on the
basis of LMI{linear matrix inequality} technique considering time-varying delays. The sufficient condition for the existence of
controller and guaranteed cost slale {eedback controller design methods are presented. Also, using some changes ol variables
and Schur complements, the obtained sufficient condition can be refarmulated as LMI forms in terms of transformed variables,
Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed
controller design method can be extended into the problem of robust guaranteed cest conlraller design method for parameter

uncertain sysfems with time-varying delays easily.
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1. Introduction

The stability analysis and conirol ol dynamic sysiems
with lime delay are prablems of recurring interest as time
delays are frequently encountered in many physical
processes and very olien are the causes for instability and
poor performance of control systems[3,6-%]. Also, control
system design that can handle modal uncertainties has been
one of the mosl challenging problems and received
considerable atfention from control engineers and scientisis
in the past decades. Much effort has been directed towards
[inding a coniroller in order to guarantee robust stability in
spite of parameter uncertainty and time delay.

Since the work of Chang and Peng[2], this issue has been
considered extensively in continuous time case[11,13] and
discrete time case[5,12], respectively. In particular, Pectersen
and McFarlane]10] introduced a notion ol quadratic
guaranteed cost confred which extends the notion of
quadratic stabilily to allow for a quadratic performance
index and presented a Riccati equation approach for
designing quadralic guaranieed cosl controllers. However,
mosl of works do notl consider time delay. Recently some
works considered the guaranteed cost control of non-delay
system to uncertain time delay systems and proposed a
puaranieed cost control design methad. However, the papers
do not deal with the time delay and parameter uncertainty
simultaneously. Especially, Yu and Chu[i4] proposed an
LMI approach to guaranteed cost control of linear uncertain
fime delay sysiems. However, Yu and Chu[l4] considered
just state delay and lime invarianl delay. Therefore, our
abjective is to design a guaranteed cost controller for
parameter uncerlain systems with time-varying delays in
both state and control inpui using LMI 1echnique.

In this paper, we consider the guaranteed cost contral of
parameler unceriain systems with lime-varying delays in
state and control input. So, we propose the design method
on the gua?antced cost contrel of generalized time-varying
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delay syslems with palameter uncertaintics using LMI
approach. Alsa the sufficient condition for the existence ol
conttoller is presented. Finally, an example is given to
verify the results of proposed method.

I1. Guaranteed cost controller design
Consider a linear syslem with time-varying delays

x(1)

() A )+ Ageli— d (D) + Beld) + Baud i — dy(1))
x{t

(), t={—d 0], d=max{d{0), (D}

where x()=R’ is the state and {)=R" is the conlrol
input, And we assume Llhat all states are measurable. In
here, time-varying delays are satisfied with

D=d, ()<, 40441, =12 (2)

As a guaranteed cost controller of the time delay system (1),
we propose a slale feedback law

w( i) = Kx(!). 3

Assaciated with the system (1) 1s the cost function
T= [Ty Tantey + ) TRl et (4)

whete ) and R are posilive definite malrices.

Definition 1 : Consider the time delay system (1). if ihete
exist a control law ¢"(¢) and a positive scalar f* such that
the closed loop system is asymplotically stable and the
closed loop value of the cost unction (4) satisfies J=< J,
then 7 is said to be a guaranieed cost and #7(¢) is said
to be a guaranteed cosl conirol law for the time-varying
delay system (1).

When we apply the control (3) to the system (1), the
resulting closed loop system is given by

#E) = A+ Aali—d(IN+BEC— ) (5)

where, Ax=A+EBK.

Theorem 1 : The controller (3) is a guaranteed cost
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controller if there exist positive definite matrices P, @, R,
S, and S, such that

bid P PB,
Ajp —(1—A)S, 0 <h (6)
BiP b —(1—5)5;

holds for time delays (2). Here,
T =AFP+PA+ Q+ K RE+ S, + KTS.K.

Proof : Firstly, we define a Lyapunov functional as

Vi(t) s = )P+ [

a0 S (g)

: .
+ [ ) KSR .
{—dili}
Taking the derivative of the Lyapunov functional (7) along
the solulion of (3) yields
W)y = x{£) "Pe(t) + x(¢) "Px(¢)
+a{ Y86 + 2 TE TS K ) )

—(1— & (Nt (1N TSt — A1 ()
—(1— dy ()i dal £33 TRTS Kl t— (1)),

which is negative definite when the matrix[15]

V) = 2 ) TP £+ () TP )
+ 2 TSR + 2 ) TE TS K ) (9)
—(1— Bx(t—d () TSl — dy (1))
—{1— Bo)x{t—dy 1)) TR TSaBi (4= oy (£) €0,

The matrix inequality {¢) implies that
W)= Vila( ) el 5) (= @~ KTRK)x(1)<0. (10)

Therefore, we have

lx(f—dl(t)) AlP—5% x(i—ad () [ <0 (11}
Ka(i=dlt))] | BIP 0 — By [Ex(t—dalt})

which ensures the asymptotical stabilily of the closed loap
system (5). Here, §,=(1-2)8, i=1,2.

Furthermore, by the integrating both sides of the
inequality (1) from 0 to 7T and using the initial candition,
we obtain

— [ o+ KRR D
>R T) B T) = #(0) " P{0)
T d,(,ﬁx( ) TS r)dr (2

— ﬁd[(mx( 7S r)dr
! RO, SR
TfTidth)x(L) K S Kl o)dr

— 0 p Tr-T .
f, &0 o) B SR o),

As the closed loop system (3) is asymptotically stable, when
T—oo,

(TP T) - C,
fz‘,‘m(r)x( £ Sde)de = 0, (13)

.7
Ty-T - N
JT—dE(T)x(T) K SeKx(r)dr — 0,

Hence. we get

A8+ KT RIS Dat
<p@TPHO+ [ dD SeDde (14)
[} I
+ iy B0 K S ),

It follows from the Definition | that the result of Theorem
1 is true. This completes the proof. [ |
In the following, we prove thal the above sufficient
condition for the existence of guaranteed cost controllers is
equivalent to the solvability of a system of LMlIs,
Theorem 2 : Censider the time delay system (1). If there
exist positive definite matrices X, V,, Y, Z, @7 and a

matrix M such that

rMoMt X X
* —Z 0 0 ¢
¥ ok —F, 0 0 [<0 (15)
* & ok —¥, 0
k ok ok ok —U

holds for the time delays (2), then the state feedback control
law

w ()= MX 'x(8) {16)

is a guaranteed cost control law and

0
Ko=) X [ # TS gy

0
, =T v—
[ @) K Y (o)

is a guaranteed cost for the tlime delay system (1). Here,
r=XA"+AX+M"B"+ BM+A, V\AT+B, .8, ¥,
=(1—-4)"'¥, ;=1,2 and * mean symmeiric lerms.

Proof . Using Schur complements and some changes of
variables, the proof is completed. The inequality of {11) is
equivalent to

AbP+PAL PA, PR, K' KT I I
* -5 0 0 0 0 0
ok k¥ — Sg 0 0 0 ]
* * ok —RF' 0 0 0D (<0 (18)
* * * k=51 0 0
% ko ok * =571 0
% * * * * *  —g!
e kKT KT I 7
* —R7L 0} 0
e %k % —5' 0 0 |<0 (19
k0 x * =500
ko ok * * Q7!
r plgT poigt pt opd
* =R ] 0
s |k ok —SL D 0 (<0 (20)
E *  —=5' 0
ko ok * k  —g!

where, [ is identity matrix with proper dimension,
@=ALP+PA+PA, § 'AlpyrrB, 3 'BIP and
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r=PAF+A:P 4, 3,7 AT+B, 5, 'BI. Using
some changes of varlables, M=KP"', Xx=p71,
Y,=57Y, =1,2, Z=R"! and U=@', (20) is changed
to (15). u

The matrix inequality (15) is an LMI form in terms of X,
Yy, Yo, Z, U and M. Therefore the guaranteed cost state
feedback controller gain K can be calculated from the
M=KP™! after finding thc LMI solutions subject to
minimization of guaranteed cost . Using LMI Toolbox[4],
the solutions can be easily obtained at the same time
because (15) is an LMI form in lerms of variables. In
particular, the oplimal guaranteed control law which
minimizes the value of the guaranteed cost for the closed
loop system can be determined by solving the following
optimization problem.

Theorem 3 - Consider the time-varying delay system (1).
IT the [ollowing oplimizalion problem

minfa+ (G Y+ B{N; GoNy)} subject to (21)

) LMI (15),
) [ —a 4,(0)1“](&

${0) —-X
o [— Gy NP
zzz')[ N 7&,}](0,
—Gy, M7
) [ J: v, <0,
v) X»7

has a solution positive definite matrices{or scalar} X, Y,
Yy Z, U, Gy, Gy a and a matrix M, then (16) is a
guaranteed cost control law which ensures the minimization
of the guaranteed cosi salistying J<j° for the time delay
system {1). Here, #{ -) denotes the trace of the mairix

]
(o)and [ a(e(e) =N, i=1,2,

Proof . The procedures of proof are summarized as
follows:

i) By Theorem 2, the proof is completed.

ii) The (i) in (21} is equivalent to #(0) X 14(0)<¢ e

iii) The second ierm of righi hand side in (17) has the
following relations.

[ o TV 0
IR G O @2)

= (N NEYT Y = B(NT YN ¢ G)

Therefore — G+ N{ Y7 'N<0 is equivalent to (iti) in {21).
(iv) The third termy of right hand side in (17) has the
lollowing relations.

0 N TerT 1
R CR S Or

_ ¢ Ty-T 1 =

- f, dg(ﬂ)ty( qﬁ( 2’) K Y; KQ‘J( r))d: (23)
= tH{ Ny Na KT ¥5 ' K) = el NER T ¥ "KW

¢ b NG PGy PNG).

Therefore — PG, P+ K' Y7 'K<0 is equivalent lo
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— PGP KT 4
[ Ol YE] <0 (24)
_ —1 g7
sl —G FTA g (25)
ket -y,

Therefore, (25) is changed into {iv) in (21) by M=KP .
(v) So, it follows from (17) that

B < at i G+ i1 Nf PGy PRR)
< at B G+ B{NS GalNy) (26)
=7

because of the condition (¥} in (21). [n other words,

PGP Gy
2 XGX>Ge ( oy P '=X) @n
= (X—NGA(X+I50 ¢ by X>7 and G.30).

Until now, we just discuss generalized time delay sysiem
without parameter uncertainties. In the following theorem.
the guaranleed cost controller design method of parameter
uncertain system with time delays is given using the
proposed method.

Theorem 4 : Consider a paramcter uncertain system with
time delay

#(7) = [A+AAG) () + [ A+ A4 L7 ) (b ay (e )
[ B+AB( )] Y+ [ B+ AB LD u(i— 1)) (28)
() = $2), rel—d,0], d=maxidi(D), d0)}

and parameter uncertainties are defined as

4ACY = DUF()E
AA (1) = DaFyt)Ey (29)
AB(#) = DyFy(f)Es
ﬂBa(f) = D]Fl(l‘)Eq

and unknown matrix is defined as

Ft)e@:={F(tx F{t)Fl)<],
the elements of F(#) 30)
are Lebesgue measurable, i=1,2,3,4}.

If there exisl positive definite matrices(or scalars) X, ¥7,
Yoo Z, U, ¢, {=1,2,3,4, and a2 matrix M such that

P, XEf MET MY MY X X
® —ed D 0 0 a0 0
¥ ok —gl 00 00
¥ o * —¥, 0 0 0
¥ ok * ¥ —Z 0 0
£ %k * ok —¥] D
ko * x ok ok —U
E * k& ok x
L ok * ® ok ok ok 31
A, L ET n; ¥.Ef
0 0
0 0
¥ 0
0 0 <0
0 0
0 0
— eI+ E, VBT 0
* —g i+ E VET

holds for time-varying delay (2) and parameter uncertaintics
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(29), then (16) is a guaranteed cosi control law and (17) is
a guaranteed cost for the time delay system (28). Here,

@ =XAT+AX+MTBT+ BM+ ge,,D,D,T
+ A, VAT B, VB

Proof ' Using the cost function {4), Lyapunov functional
{7), and the following lemma
2x(£) "PDF(OEx{ )< exl £ PDDPA 1) + - () TETExl 1) (32)

then the sufficient condition is obtained similarly to the
proof of theorem 2 as follows:

@ PA, PE,
* %ZE{Er 5 0 <0 (33)
* * L ElE, - &,

€4

where,

Gy=(A+BE) P+ PLA+ BR)+ 5+ KT8,K+ 0
+ K"RE +&,PD\ DI P- |'—E1TE1+6 EDOTP

+ %3 KB EK+ e,PD,DIP+ &,PD,DFP.

And then, using Schur complements, some changes of
variables, M=KP™', X=pP7', zZ=pr7Y, U=},
=571 {=1,2, and matrix iaversion lemma

( & EfE)
2
= 3 '+ §7'Elei-E 5 TEDE, 57
(34)

( S‘z"}l:EfEi) !
= 5"+ 3 'Elsg-E, & 'EDE, 57
the matrix inequality (33} is changed o LMI (31) in terms
of X, ¥, Yy, Z U, g, t=1,2.3,4, and M. | |
Also, we can get the optimal control law which minimizes
the value of guaranteed cost for the parameter uncertain
closed loop system by solving the following optimization
problem.

Thecrem 5
varying delay systems (28). If the following optimization
problem

: Consider the parameter uncertain time-

m{a+ 071 G + #{ NT GoN3) b subject to (35)

5 LMI (3D),

o[58 Yo
i) [_Gl f"k]m.
;iv)[ I _Yz]w

v X> T

has a solulion positive definite matrices(or scalars) X, Y,

Yoo Z0 U, Gi, Gi, @ &, &5 &3, & and a mairix M,
then {16) is a guaraniced cost control law which ensures the
minimization of the guaranteed cost satisfying j< 7/ for the
parameler uncerlain time-varying delay system (28).
Proof. The procedurcs of prool are the same as those of
Theorem 3. [ ]
Example : Consider a parameter uncerfain syslem with
time-varying delays in state and control inpui

aor = ([ 2 1]+ [ ] pear i
+{[D“l . 1]+[%]]Fg(f)[1 1]},1:(;741(;))
=[] eoun (36)
+{[001] [Ol]Fa(f)}u(i—dg(l))

d(ty = 3+0.1sint, dy(t) = 5+sm(0.4¢),

gle) = e” a1’
All solutions are oblained in (35) simultaneously as follows:

o o[ 2.2897 —0.8203
X = ‘{70.3283 2.7;024}’
— qpie | 2,436 —1.591
Yi=10 LLSQM 1_7524l

¥, = 1.7511 2108,
Z = 4692910,
C o oapse | 25930 —1.2321
v=1 [—1.2321 2.0896]

Moo= 107<[0.0000 —9.7925], {37
g = 1.014=10% & = 1.8253 =10°%,
g = 4.3608%10%, =, = 5.1448 <105,
e = L81R0#1077,
Gy = 3.7556%107%,
_ apiec [ 0.0000 —0.0000
Gy = 107 20 o ieen |

By applying Theorem 4 and Theorem 5, the guaranteed cost
state feedback law is

()= —1.4400 —4.0194] x( £, (386}

and the guarantced cost ol parameter uncerlain system with
time-varying delays 1s

J=3.9981 <107 3%

III. Conclusions

In 1his paper, we proposed guaranteed cost controller
design methods for the generalized time-varying delay
systems with delayed stale and control inpul. The existence
conditton and the design methods of guaranteed cosi
contioller were given. Also, the guaranteed cost bound was
presented. Through some techniques, the sufficient condilion
was changed into an LMI form in terms of finding
variables. A guaranieed cosl state feedback controller could
be easily oblained using LMI toolbox. Furthermore, we
presented the robust guaranieed cost controller design
method and guaranteed cost bound for parameter uncertain
system with time-varying delays in stale and control inpul
using the proposed method. Alse, all solutions of LMIs,
guaranteed cost conlroller gain, and wupper bound of
guaranteed cost were obtained at lhe same time. Through a
numerical example, we checked the validity of the proposed
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method.

References

[11 8. P. Boyd, L. E, Ghaoui, E. Feron, and V.
Balakrishnan, Lirear Matrix Inequalities in System and
Contral Theory, SIAM, 1994,

[2] 5. 8. L. Chang and T. K. C. Peng, “Adaptive guaranteed
cost control of systems with uncertain parameters,”
IEEE Trans. Automatr Contref, vol. 17, no. 4, pp.
474-483, 1972.

131 H. H. Choi and M, I Chung, “Memorvless A~
cantroller design for linear systems with delayed state
and control,” dutomatica, vol. 31, no. 6, pp. 917-919,
1595,

[4] P. Gahinet, A. Nemirovski, A. I, Laub, and M. Chilali,
LA Control Toolbox, The Math Works Inc., [995.
[5] I. C. Geromel, P. L. D. Peres, and 8. R. Souza, “H
guaranteed cost control [or uncertain discrete-time linear
systems,” fnternational Jowrnal of Corirol, vol. 57, no.

4, pp. 853-864, 1593,

[6] E. T. Jeung, I. H. Kim, and H. B. Park, “H™ output
feedback controller design for linear systems with
time-varying delayed state,” [EEE Trans Aufomat.
Control, vol. 42, no. 7, pp. 971-974. 1998.

1 J. H. Kim, E. T. Jeung, and H, B, Park, “Robust control
for parameter uncertain delay systcms In state and

—
~)

control input,” Awutomatica, vol. 32, no. 9, pp. 1337-
1339, 1996.

Jong Hae Kimn

He was born in Korea, on January 10,
1970. He received the B. S., M. S, and
Ph. D. degrees in electronic engineering
from Kyungpook WNational University,
Taegu, Korea, in 1993, 1993, and 199§,
respeclively. He has been with STRC
(Sensor Technology Research Center) at Kyungpook National
University since 1998, Also, he has been with Osaka
University as a research [ellow for one year(from March,
2000 to March, 2001). He received ‘International Scholarship
Award’ from SICE(Japan) in 1999 and ‘Young Researcher
Paper Award' from [CASE in 1999. His areas ol research
inlerest are trobust contral, mixed H/H” conirel, nonlinear
control, the stabilization of time-delay systems, non-fragile
control, reliable control, control of descriptor svstems, and
industrial application control.

[8] J. H. Kim and H. B. Park, “& stale [eedback control
for generalized conlinuous/discrete time delay system.”
Automatica, vol. 35, no. 8, pp. 1443-1451, 1999,

[9] J. H. Lee, S. W Kim, and W. M. Kwon, "Memaryless
HT controllers lor state delayed systems,” [EEE Trans
Auiomai. Control, vol. 39, no.l, pp. 159-162, 1994,

[10] I. R. Pelersen and D. €. McFarlane, “Optimal
guaranteed cost control and [llering for uncertain
lineaw systems.” IEEE Trams. Auwtamar Control, vol.
39, pp. 1971-1977, 1994,

[L1] T. R. Pelersen, “Guaranteed cost LQG conirol of
uncertain linear systems.” JEE proceedings-D, vol. 142,
na. 2, pp. 95-102, 1995.

[12] 1. R Petersen, . C. McFarlane, and M. A. Rotea,
“Optimal guaranteed cost contrel of discrele-time
uncertain linear systems,” Infernational Jowrnal of
Robust and Nonlmear Control, vol 8§, no. 5, pp.
H49-657, 1998,

[13] P. L. D. Peres, I C Geromel, and S. R. Souza, “&
guaranteed cost control for uncertain continuous-time
linear systems,” Sysrems and Conmrol Letters, vol. 20,
no. 4, pp. 413-413, 1993,

[14] L. Yu and J. Chu, “An LMI approach 1o guaranteed
cost control of linear uncertain time-delay systems,”
Automatica, vol. 35, pp. 1155-1159, 1999,

[15] E. Kreinder and A, Jamesen, “Cenditions for
nonnegativeness of partitioned matrices," JEEE Trans,
Automat Control, vol. 17, pp. 147-148, 1972.



