From the assumption that an individual's working memory capacity is limited, the cognitive load theory is concerned with providing adequate instructional design so as to avoid overloading the learner's working memory. Based on the cognitive load theory, this study aimed to provide implications for effective problem-based collaborative teaching and learning design by analyzing the level of middle school students' cognitive load which is perceived according to the problem types(short answer type, narrative type, project) in the process of collaborative problem solving in middle school function part. To do this, this study analyzed whether there is a relevant difference in the level of cognitive load for the problem type according to the math achievement level and gender in the process of cooperative problem solving. As a result, there was a relevant difference in the task burden and task difficulty perceived according to the types of problems in both first and second graders in middle schools students. and there was no significant difference in the cognitive effort. In addition, the efficacy of task performance differed between first and second graders. The significance of this study is as follows: in the process of collaborative problem solving learning, which is most frequently used in school classrooms, it examined students' cognitive load according to problem types in various aspects of grade, achievement level, and gender.
본 연구는 수학 학습부진아들이 중학교 함수를 재학습하는 과정에서 나타나는 오류를 사례별로 분석하여 그 원인을 수학과 특성, 함수학습에서의 오류 유형 등과 결부시켜 논의를 하였다. 수학 학습부진아들은 일반적으로 학생들이 다 알고 있을 것으로 생각되는 가장 기본적인 내용에서 학습에 문제가 생길 수 있고, 주어진 문제에서 요구하는 풀이나 답이 무엇인지 정확하게 인식하지 못하여 자신에 옳다고 생각하는 부분까지만 풀거나 주어진 문제를 해석하는 데에 있어 자신이 생각하기 편리한대로 해석하여 문제를 해결하지 못하는 경우가 있다. 따라서 교사는 문제를 해결하는 과정에서 문제가 요구하는 것이 무엇인지 학생들에게 질문하고, 문제를 이해하고 계획을 세우는 단계에서 무엇을 구해야하는지 학생 스스로 알 수 있도록 돕고, 학생들이 이해할 수 있는 구체적인 상황이나 현실적인 문제에서 시작하여 그 내용을 이해시킨 후 특수한 예를 통해 일반화할 수 있도록 지도하는 방법 등 수학 학습 개선 방향을 제시할 수 있다.
심전도(electrocardiogram, ECG)는 심박동의 속도와 규칙성, 심실의 크기와 위치, 심장 손상 여부를 측정하는 데 사용되며, 모든 심장질환의 원인을 찾아낼 수 있다. ECG-KIT를 이용하여 획득한 ECG 신호는 ECG 신호에 잡음을 포함하기 때문에 딥러닝에 적용하기 위해서는 ECG 신호에서 잡음을 제거해야만 한다. 본 논문에서는, ECG 신호에 포함된 잡음은 Digital FIR 해밍 창함수를 이용한 저역통과 필터를 사용하여 제거하였다. LSTM의 딥러닝 모델을 사용하여 3가지 활성화 함수인 sigmoid(), ReLU(), tanh() 에 대한 성능 평가를 비교했을 때, 오차가 가장 작은 활성화 함수는 tanh() 함수 임을 확인하였고, batch size가 작은 경우가 큰 경우보다 시간이 많이 소요되었다. 또한 GRU 모델의 성능 평가의 결과가 LSTM 모델보다 우수한 것을 확인하였다.
본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.
Typically everyday human life tasks involve at least two people moving objects such as tables and beds, and the balancing of such object changes based on one person's action. However, many studies in previous work performed their tasks solely on robots without factoring human cooperation. Therefore, in this paper, we propose cooperative robot for table balancing using Q-learning that enables cooperative work between human and robot. The human's action is recognized in order to balance the table by the proposed robot whose camera takes the image of the table's state, and it performs the table-balancing action according to the recognized human action without high performance equipment. The classification of human action uses a deep learning technology, specifically AlexNet, and has an accuracy of 96.9% over 10-fold cross-validation. The experiment of Q-learning was carried out over 2,000 episodes with 200 trials. The overall results of the proposed Q-learning show that the Q function stably converged at this number of episodes. This stable convergence determined Q-learning policies for the robot actions. Video of the robotic cooperation with human over the table balancing task using the proposed Q-Learning can be found at http://ibot.knu.ac.kr/videocooperation.html.
There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.
The purpose of this study was to investigate the impact of organizational learning culture on job satisfaction and organizational commitment. Two streams of scholarly work have provided the theoretical foundations for this study. The first stream comes from the literature on learning organization. The second stream of the theoretical foundation comes from an extensive literature on attitude-intention-behavior relationships. In addition, this study was tested three alternative models. Alternative model 1 employed job satisfaction as the mediating commitments variable between learning culture and organizational commitment. Alternative model 2 used organizational commitment as the mediating variable between learning culture and job satisfaction. Finally, alternative model 3 specified a direct impact of learning culture on both job satisfaction and organizational commitment, and reciprocal linkages between these two variables. The results of this study support the hypothesized relations among an organization's learning culture, job satisfaction, and organizational commitment. The findings of this study are various congruent with a widely accepted hypothesis that job satisfaction serves as an appraisal function in evaluating various work environments and determining emotional responses such as organizational commitment. Organizational learning culture is one of the important factors that organizations cannot overlook. Therefore, the findings of this study provide a new direction for researchers seeking to explain the complex relations among these central organizational variables.
기존 연구에서는 문제은행을 만들고 평가시스템을 구현하여 학습자의 성취도를 평가하고자 했다. 그러나 문항을 만들거나 이미 만들어진 문항을 가져오는 과정에서 문제은행을 구현하는 데, 시간과 노력이 많이 소요되었다. 또 종합평가 위주의 모의고시 형의 문항이 평가문항으로 제시 되다보니 소단원의 학습 주제에 대한 성취도 평가가 실시되기 어려웠다. 소단원이나 수학 원리등을 학습하는 데 있어서, 평가에 대한 문제점을 개선하기 위하여, 본 논문은 문항 형태(Item Form)를 이용한 문제은행을 SCORM2004의 실행환경 RTE에서 데이터 모델 인터액션으로 구현한다. 학습관리 시스템에 의하여 문항 형태의 정의에 따라 자동 생성된, 평가문항에 대한 성취도 검사에 있어서, 보다 객관적인 판단을 위하여 확신 인자 함수(Confidence Factor Function)를 사용한다. 실험을 위한 콘텐츠로 수학의 삼각 함수를 두 개의 실험 대비군에게 현장 적용을 하여 제안된 문항 생성 시스템을 이용한 교육이 유의성이 있음을 보였다.
동영상 안정화 기술은 최근 1인 미디어 시장이 거대화됨에 따라 그 중요성이 점점 커지고 있는 카메라 기술 중 하나이다. 딥러닝 기반의 기존 방법들에서는 안정화 전/후 동영상 데이터 쌍을 사용하였으나 동영상의 특성상 동기화된 안정화 전/후 데이터를 만드는 것은 많은 시간과 노력이 필요하다. 최근 이러한 문제를 완화하기 위하여 안정화 전 데이터만을 사용하는 비지도 학습 방법이 제시되고 있다. 본 논문에서는 비지도 학습 방법의 하나인 Convolutional Autoencoder 구조를 사용하여 안정화 전/후 동영상 데이터 쌍 없이 안정화 전 영상만으로 안정화 궤적을 학습하는 네트워크 구조를 제안한다. 네트워크 입력 및 출력으로 옵티컬 플로우를 사용하고 네트워크 경량화 및 노이즈 최소화를 위해 옵티컬 플로우를 Grid 단위로 맵핑하여 사용했다. 또한 비지도 학습 방법으로 안정화된 궤적을 생성하기 위해 옵티컬 플로우를 부드럽게 만드는 손실함수를 정의하였고 결과 비교를 통해 손실함수의 의도대로 부드러운 궤적을 생성하도록 네트워크가 학습되었음을 확인했다.
연합학습은 보안 및 프라이버시 측면에서 중앙 집중식 방법보다 안전하도록 설계되었음에도 불구하고 여전히 많은 취약점을 내재한다. 적대적 공격(adversarial attack)을 수행하는 공격자는 신중하게 제작된 입력 데이터, 즉 적대적 예제(adversarial examples)를 클라이언트의 학습 데이터에 주입하여 딥러닝 모델을 의도적으로 조작하여 오분류를 유도한다. 이에 대한 보편적인 방어 전략은 이른바 적대적 학습(adversarial training)으로 적대적 예제들의 특성을 선제적으로 모델에 학습시키는 것이다. 기존의 연구에서는 모든 클라이언트가 적대적 공격 하에 있는 상황을 가정하는데 연합학습의 클라이언트 수가 매우 많음을 고려하면 실제와는 거리가 있다. 본 논문에서는 클라이언트의 일부가 공격 하에 있는 시나리오에서 적대적 학습의 양상을 실험적으로 살핀다. 우리는 실험을 통해 적대적 예제에 대한 분류 정확도가 증가하면 정상 샘플에 대한 분류 정확도의 감소하는 트레이드오프 관계를 가짐을 밝혔다. 이러한 트레이드오프 관계를 효과적으로 활용하기 위해 클라이언트가 자신이 공격받는지 여부에 따라 손실함수를 적응적으로 선택하여 적대적 학습을 수행하는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.