• Title/Summary/Keyword: invariant subspace

Search Result 65, Processing Time 0.02 seconds

THE HAMILTONIAN SYSTEM WITH THE NONLINEAR PERTURBED POTENTIAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.195-206
    • /
    • 2007
  • We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with perturbed polynomial and exponential potentials, $\dot{z}= JG^{\prime}(z)$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}={\frac{dz}{dt}}$, $J=\(\array{0&-I\\I&0}\)$, I is the identity matrix on $R^n,G:R^{2n}{\rightarrow}R$, G(0, 0) = 0 and $G^{\prime}$ is the gradient of G. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.

  • PDF

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS

  • Lining, Jiang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.575-585
    • /
    • 2008
  • Suppose that D is a $C^*$-discrete quantum group and $D_0$ a discrete quantum group associated with D. If there exists a continuous action of D on an operator algebra L(H) so that L(H) becomes a D-module algebra, and if the inner product on the Hilbert space H is D-invariant, there is a unique $C^*$-representation $\theta$ of D associated with the action. The fixed-point subspace under the action of D is a Von Neumann algebra, and furthermore, it is the commutant of $\theta$(D) in L(H).

Domain Adaptation Image Classification Based on Multi-sparse Representation

  • Zhang, Xu;Wang, Xiaofeng;Du, Yue;Qin, Xiaoyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2590-2606
    • /
    • 2017
  • Generally, research of classical image classification algorithms assume that training data and testing data are derived from the same domain with the same distribution. Unfortunately, in practical applications, this assumption is rarely met. Aiming at the problem, a domain adaption image classification approach based on multi-sparse representation is proposed in this paper. The existences of intermediate domains are hypothesized between the source and target domains. And each intermediate subspace is modeled through online dictionary learning with target data updating. On the one hand, the reconstruction error of the target data is guaranteed, on the other, the transition from the source domain to the target domain is as smooth as possible. An augmented feature representation produced by invariant sparse codes across the source, intermediate and target domain dictionaries is employed for across domain recognition. Experimental results verify the effectiveness of the proposed algorithm.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

Direction Assignment of Left Eigenvector in Linear MIMO System (선형 다변수 입출력 시스템에서 좌 고유벡터의 방향 지정)

  • Kim, Sung-Hyun;Yang, Hyun-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • In this paper, we propose novel eigenstructure assignment method in full-state feedback for linear time-invariant MIMO system such that directions of some left eigenvectors are exactly assigned to the desired directions. It is required to consider the direction of left eigenvector in designing eigenstructure of closed-loop system, because the direction of left eigenvector has influence over excitation by associated input variables in time-domain response. Exact direction of a left eigenvector can be achieved by assigning proper right eigenvector set satisfying the conditions of the presented theorem based on Moore's theorem and the orthogonality of left and right eigenvector. The right eigenvector should reside in the subspace given by the desired eigenvalue, which restrict a number of designable left eigenvector. For the two cases in which desired eigenvalues are all real and contain complex number, design freedom of designable left eigenvector are given.

Observer Design for Bilinear Systems with Unknown Inputs (미지 입력을 가진 쌍선형 시스템의 관측기 구성)

  • Son, Young-Ik;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.927-929
    • /
    • 1996
  • In this paper, we considers the problem of designing an observer for bilinear systems with unknown input. A sufficient condition for the asymptotic stability of the proposed observer is derived by means of delectability, invariant zeros, and stable subspace. In sufficient condition, the bound which guarantees the asymptotic stability was derived, which based on the Lyapunov stability. And Observer existing conditions are suggested in various cases. Through a simple example, we derived the observer structure and the bound which guarantees the asymptotic stability.

  • PDF

A DOUBLE INTEGRAL CHARACTERIZATION OF A BERGMAN TYPE SPACE AND ITS MÖBIUS INVARIANT SUBSPACE

  • Yuan, Cheng;Zeng, Hong-Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1643-1653
    • /
    • 2019
  • This paper shows that if $1<p<{\infty}$, ${\alpha}{\geq}-n-2$, ${\alpha}>-1-{\frac{p}{2}}$ and f is holomorphic on the unit ball ${\mathbb{B}}_n$, then $${\int_{{\mathbb{B}}_n}}{\mid}Rf(z){\mid}^p(1-{\mid}z{\mid}^2)^{p+{\alpha}}dv_{\alpha}(z)<{\infty}$$ if and only if $${\int_{{\mathbb{B}}_n}}{\int_{{\mathbb{B}}_n}}{\frac{{\mid}f(z)-F({\omega}){\mid}^p}{{\mid}1-(z,{\omega}){\mid}^{n+1+s+t-{\alpha}}}}(1-{\mid}{\omega}{\mid}^2)^s(1-{\mid}z{\mid}^2)^tdv(z)dv({\omega})<{\infty}$$ where s, t > -1 with $min(s,t)>{\alpha}$.

LOCAL SPECTRAL THEORY II

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.487-496
    • /
    • 2021
  • In this paper we show that if A ∈ L(X) and B ∈ L(Y), X and Y complex Banach spaces, then A ⊕ B ∈ L(X ⊕ Y) is subscalar if and only if both A and B are subscalar. We also prove that if A, Q ∈ L(X) satisfies AQ = QA and Qp = 0 for some nonnegative integer p, then A has property (C) (resp. property (𝛽)) if and only if so does A + Q (resp. property (𝛽)). Finally, we show that A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA and BA ∈ L(X) is subscalar with property (𝛿) then both Lat(BA) and Lat(AC) are non-trivial.