LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG \mathcal{L}^{\dagger}

SANG KI LEE AND JOO HO KANG*

ABSTRACT. Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,\cdots\}$. Let \mathcal{L} be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],\cdots\}$ and let $\mathrm{Alg}\mathcal{L}$ be the algebra of bounded operators which leave invariant all projections in \mathcal{L} . Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $\mathrm{Alg}\mathcal{L}$ such that $T_{(p,q)} = 0$ for all T in \mathcal{A} . If \mathcal{A} is a Lie ideal, then $T_{(p,p)} = T_{(p+1,p+1)} = \cdots = T_{(q,q)}$ and $T_{(i,j)} = 0, p \leqslant i \leqslant q$ and $i < j \leqslant q$ for all T in \mathcal{A} .

AMS Mathematics Subject Classification : 47L35 $Key\ words\ and\ phrases$: Linear manifold, Lie ideal, The upper triangular operator algebra.

1. Introduction

Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1, e_2, \cdots\}$ and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H} . If x_1, x_2, \cdots, x_k are vectors in \mathcal{H} , we denote by $[x_1, x_2, \cdots, x_k]$ the closed subspace spanned by the vectors x_1, x_2, \cdots, x_k . A subspace lattice is a strongly closed lattice of orthogonal projections acting on \mathcal{H} . In this paper, we denote by \mathcal{L} the subspace lattice generated by the subspaces $\{[e_1], [e_1, e_2][e_1, e_2, e_3], \cdots\}$. By $Alg\mathcal{L}$, we mean the algebra of bounded operators which leave invariant all projections in \mathcal{L} . It is easy to see that all such operators have the following matrix form

Received November 11, 2017. Revised December 6, 2017. Accepted February 13, 2018. * Corresponding author.

[†]This work was supported by Daegu University Grant(2017)

^{© 2018} Korean SIGCAM and KSCAM.

where all non-starred entries are zero. We call the algebra $Alg\mathcal{L}$ by the upper triangular operator algebra.

The Lie product in the algebra $Alg\mathcal{L}$ is defined by

$$[A, B] = AB - BA$$

for operators A and B in Alg \mathcal{L} . A linear manifold \mathcal{A} in Alg \mathcal{L} is called a Lie ideal in $Alg\mathcal{L}$ if [A, X] is in \mathcal{A} for all A in $Alg\mathcal{L}$ and all X in \mathcal{A} .

In this paper we find examples of Lie ideals and investigate relationships between Lie ideals in the algebra Alg \mathcal{L} . Let I be the identity operator on \mathcal{H} in this paper. Let \mathbb{C} be the set of all complex numbers and let $\mathbb{N} = \{1, 2, \dots\}$.

2. Examples of Lie ideals in $Alg \mathcal{L}$

If we know the following facts, then we can easily prove the following examples. Let $A = (a_{ij})$ and $T = (t_{ij})$ be operators in Alg \mathcal{L} . Then

- (1) the (p,p)-entry of AT is $a_{pp}t_{pp}$ for all $p=1,2,\cdots$
- (2) the (p,p)-entry of TA is $t_{pp}a_{pp}$ for all $p=1,2,\cdots$
- (3) the (p,q)-entry of AT is $a_{pp}t_{pq} + a_{p} t_{p+1}t_{p+1} t_{p+1} + \cdots + a_{pq}t_{qq}(p < q)$ (4) the (p,q)-entry of TA is $t_{pp}a_{pq} + t_{p} t_{p+1} t_{p+1} t_{q+1} + \cdots + t_{pq}t_{qq}(p < q)$ (5) the (p,p)-entry of AT TA is 0 for all $p = 1, 2, \cdots$
- (6) the (p,q)-entry of AT-TA is $a_{pp}t_{pq}+a_{p,p+1}t_{p+1,q}+\cdots+a_{pq}t_{qq}$ $(t_{pp}a_{pq} + t_{p p+1}a_{p+1 q} + \cdots + t_{pq}a_{qq})$ We denote the (i, j)-component of T by $T_{(i, j)}$.

Example 2.1. i)Let $A_0 = \{ T \in Alg \mathcal{L} \mid T_{(i,i)} = 0, i \in \mathbb{N} \}$. Then A_0 is a Lie ideal in $Alg\mathcal{L}$.

ii) Let Γ be a nonempty subset of $\mathbb N$ and let $\mathcal A_\Gamma=\{\ T\in\mathrm{Alg}\mathcal L\ \mid T_{(i,i)}=0, i\in$ Γ }. Then \mathcal{A}_{Γ} is a Lie ideal in Alg \mathcal{L} .

If $\Gamma = \emptyset$, then $\mathcal{A}_{\Gamma} = \text{Alg}\mathcal{L}$. If $\Gamma = \mathbb{N}$, then $\mathcal{A}_{\Gamma} = \mathcal{A}_{0}$.

Example 2.2. i)Let I be the identity operator on \mathcal{H} and let $\mathcal{A}_1 = \{ \alpha I \mid \alpha \in \mathbb{C} \}$. Then A_1 is a Lie ideal in Alg \mathcal{L} .

ii)Let $\mathcal{A}_2 = \{ \alpha I + T \mid T \in \mathcal{A}_0, \alpha \in \mathbb{C} \}$. Then \mathcal{A}_2 is a Lie ideal in $Alg\mathcal{L}$.

Example 2.3. i)Let p be a natural number and let $A_{0,p} = \{ T \in A_0 \mid T_{(p,p+1)} = \}$ 0 }. Then $\mathcal{A}_{0,p}$ is a Lie ideal in Alg \mathcal{L} .

```
ii)Let \Lambda = \{p_1, p_2, \dots\} be a subset of \mathbb{N}. Let \mathcal{A}_{0,\Lambda} = \{T \in \mathcal{A}_0 \mid T_{(p_i, p_i + 1)} = 0, i = 1, 2, \dots\}. Then \mathcal{A}_{0,\Lambda} is a Lie ideal in Alg\mathcal{L}.
```

iii)Let p be a natural number and let $\mathcal{A}_{2,p} = \{ T \in \mathcal{A}_2 \mid T_{(p,p+1)} = 0 \}$. Then $\mathcal{A}_{2,p}$ is a Lie ideal in $Alg\mathcal{L}$.

Example 2.4. Let p and q be natural numbers such that p < q.

- i)Let $\mathcal{B}_{p,q} = \{ T \in Alg \mathcal{L} \mid T_{(p,q)} = 0 \}$. Then $\mathcal{B}_{p,q}$ is not a Lie ideal in $Alg \mathcal{L}$.
- ii)Let $\mathcal{B}^{(1)}_{p,q} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(p,k)} = 0, k = p, p+1, \cdots, q \}$. Then $\mathcal{B}^{(1)}_{p,q}$ is not a Lie ideal in Alg \mathcal{L} .
- iii) Let $\mathcal{B}^{(2)}_{p,q}=\{\ T\in \mathrm{Alg}\mathcal{L}\ |\ T_{(k,q)}=0, k=p,p+1,\cdots,q\ \}$. Then $\mathcal{B}^{(2)}_{p,q}$ is not a Lie ideal in $\mathrm{Alg}\mathcal{L}$.
- iv)Let $C_{p,q} = \{ T \in Alg \mathcal{L} \mid T_{(p,i)} = 0 = T_{(j,q)}, p \leq i, j \leq q \}$. If q = p + 1, then $C_{p,q}$ is a Lie ideal in $Alg \mathcal{L}$. If p + 1 < q, then $C_{p,q}$ is not a Lie ideal in $Alg \mathcal{L}$.

Example 2.5. Let p and q be natural numbers such that p < q.

- i)Let $\mathcal{D}_{p,q} = \{ T \in Alg \mathcal{L} \mid T_{(p,p)} = T_{(p+1,p+1)} = \cdots = T_{(q,q)} \}$. Then $\mathcal{D}_{p,q}$ is a Lie ideal in $Alg \mathcal{L}$.
- ii)Let $\mathcal{D}_{p,\infty} = \{ T \in Alg \mathcal{L} \mid T_{(p,p)} = T_{(p+1,p+1)} = \cdots \}$. Then $\mathcal{D}_{p,\infty}$ is a Lie ideal in $Alg \mathcal{L}$.

Example 2.6. Let p and q be natural numbers such that p < q.

- i)Let $\mathcal{A}_{p,q} = \{ T \in \mathcal{D}_{p,q} \mid T_{(i,j)} = 0, p \leqslant i \leqslant q-1 \text{ and } i < j \leqslant q \}$. Then $\mathcal{A}_{p,q}$ is a Lie ideal in Alg \mathcal{L} .
- ii)Let $\mathcal{A}_{p,q}^{(0)} = \{ T \in \text{Alg} \mathcal{L} \mid T_{(i,j)} = 0, p \leqslant i \leqslant q \text{ and } i \leqslant j \leqslant q \}$. Then $\mathcal{A}_{p,q}^{(0)}$ is a Lie ideal in Alg \mathcal{L} .
- Proof. i) and ii) $\mathcal{A}_{p,q}$ is clearly a linear manifold in Alg \mathcal{L} . Let $T=(t_{ij})\in\mathcal{A}_{p,q}$ and let $A=(a_{ij})\in \text{Alg}\mathcal{L}$. Then $(AT-TA)_{(p,p)}=\cdots=(AT-TA)_{(q,q)}=0$ and so $AT-TA\in\mathcal{D}_{p,q}$. For $p\leqslant i\leqslant q-1$ and $i< j\leqslant q$, $(AT-TA)_{(i,j)}=a_{ii}t_{ij}+a_{i}$ $a_{i+1}t_{i+1}$ a_{i+1} $a_{$

Example 2.7. Let p and q be natural numbers such that p < q.

- i)Let $\mathcal{A}_{p,q}^{(1)} = \{ T \in \mathcal{D}_{p,q} \mid T_{(p,i)} = 0 \text{ and } T_{(k,j)} = 0, i = p+1, \cdots, q-1, p+1 \leq k \leq q-1, k < j \leq q \}$. Then $\mathcal{A}_{p,q}^{(1)}$ is a Lie ideal in Alg \mathcal{L} .
- ii)Let $\mathcal{A}_{p,q}^{(2)} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(p,i)} = 0 \text{ and } T_{(k,j)} = 0, p \leqslant i \leqslant q-1, p+1 \leqslant k \leqslant q-1, k \leqslant j \leqslant q \}$. Then $\mathcal{A}_{p,q}^{(2)}$ is a Lie ideal in Alg \mathcal{L} .
- *Proof.* i) and ii) $\mathcal{A}_{p,q}^{(1)}$ and $\mathcal{A}_{p,q}^{(2)}$ are linear manifolds in $\mathrm{Alg}\mathcal{L}$. Let $T=(t_{ij})\in\mathcal{A}_{p,q}^{(1)}$ and let $A=(a_{ij})\in\mathrm{Alg}\mathcal{L}$. Then $(AT-TA)_{(p,p)}=\cdots=(AT-TA)_{(q,q)}=0$.
- $(AT TA)_{(p,i)} = a_{pp}t_{pi} + a_{p p+1}t_{p+1 i} + \dots + a_{pi}t_{ii} (t_{pp}a_{pi} + t_{p p+1}a_{p+1 i} + \dots + t_{pi}a_{ii}) = 0$ because $t_{ii} = t_{pp}$ for $i = p + 1, \dots, q 1$.
- $(AT TA)_{(k,j)} = a_{kk}t_{kj} + a_{k} + t_{k+1}t_{j} + \dots + a_{kj}t_{jj} (t_{kk}a_{kj} + t_{k} + t_{k+1}a_{k+1}) + \dots + t_{kj}a_{jj} = 0$ because $t_{kk} = t_{jj}$ for $p + 1 \le k < q$ and $k \le j \le q$.

3. Main results

Theorem 3.1. Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\{0\} \subsetneq \mathcal{A} \subset \mathcal{B}_{p,q}$. If \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$, then $T_{(p,p)} = T_{(p+1,p+1)} = \cdots = T_{(q,q)}$ and $T_{(i,j)} = 0, p \leqslant i \leqslant q$ and $i < j \leqslant q$ for all T in \mathcal{A} i.e. $\mathcal{A} \subset \mathcal{A}_{p,q}$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $T=(t_{ij})\in\mathcal{A}$ and let $A=(a_{ij})\in Alg\mathcal{L}$. Then $t_{pq}=0$ and

```
0 = (AT - TA)_{(p,q)} = a_{pp}t_{pq} + a_{p p+1}t_{p+1 q} + \dots + a_{pq}t_{qq} - (t_{pp}a_{pq} + t_{p p+1}a_{p+1 q} + \dots + t_{pq}a_{qq}) \cdot \dots \cdot (*_{1}).
```

 $(t_{pp}u_{pq} + t_p \ _{p+1}u_{p+1} \ _q + \cdots + t_{pq}u_{qq}) \cdots \cdots (*_1).$ Since $(*_1)$ holds for all A in Alg \mathcal{L} , $t_{pp} = t_{qq}, t_{p+1} \ _q = 0, \cdots, t_{q-1} \ _q = 0$ and $t_{p \ p+1} = 0, t_{p \ p+2} = 0, \cdots, t_{pq} = 0.$

$$0 = (AT - TA)_{(p+1,q)} = a_{p+1} {}_{p+1}t_{p+1} {}_{q} + a_{p+1} {}_{p+2}t_{p+2} {}_{q} + \dots + a_{p+1} {}_{q}t_{qq} - (t_{p+1} {}_{p+1}a_{p+1} {}_{q} + t_{p+1} {}_{p+2}a_{p+2} {}_{q} + \dots + t_{p+1} {}_{q}a_{qq}) \dots (*_{2}).$$

Since $(*_2)$ holds for all A in Alg \mathcal{L} , t_{p+1} $_{p+1} = t_{qq}$, t_{p+1} $_{p+2} = 0$, \cdots and t_{p+1} $_{q} = 0$.

$$0 = (AT - TA)_{(q-1,q)} = a_{q-1} \ _{q-1}t_{q-1} \ _{q} + a_{q-1} \ _{q}t_{qq} - (t_{q-1} \ _{q-1}a_{q-1} \ _{q} + t_{q-1} \ _{q}a_{qq}),$$

$$t_{q-1} \ _{q-1} = t_{qq}, t_{q-1} \ _{q} = 0. \text{ Hence } t_{pp} = \cdots = t_{qq}, t_{ij} = 0 \text{ , where } p \leqslant i \leqslant q \text{ and } i < j \leqslant q. \text{ i.e. } A \subset \mathcal{A}_{p,q}.$$

We can prove Theorem 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.5 by the same way with the proof of Theorem 3.1.

Theorem 3.2. Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}_{p,q}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$.

Theorem 3.3. Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(1)}_{p,q}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$.

Theorem 3.4. Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(2)}_{p,q}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$.

Theorem 3.5. Let p and q be natural numbers (p+1 < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{C}_{p,q}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$.

Theorem 3.6. Let p and q be natural numbers such that p < q. Let A be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q}^{(0)} \subset \mathcal{A} \subset \mathcal{A}_{p,q}$. Then A is a Lie ideal in $Alg\mathcal{L}$ if and only if $A = \mathcal{A}_{p,q}^{(0)}$ or $A = \mathcal{A}_{p,q}$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $\mathcal{A} \neq \mathcal{A}_{p,q}^{(0)}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{p,q}^{(0)}$. Since T is in \mathcal{A} , T is in $\mathcal{A}_{p,q}$. So there is α in \mathbb{C} such that $T_{(p,p)} = T_{(p+1,p+1)} = \cdots = T_{(q,q)} = \alpha \neq 0$ and $T_{(i,j)} = 0, p \leq i \leq q$

and $i < j \leqslant q$. Let $A \in \mathcal{A}_{p,q}$. Then there is a complex number β such that $A_{(p,p)} = A_{(p+1,p+1)} = \dots = A_{(q,q)} = \beta$. If $\beta = 0$, then $A \in \mathcal{A}_{p,q}^{(0)}$ and so $A \in \mathcal{A}$. If $\beta = \alpha$, then $T - A \in \mathcal{A}_{p,q}^{(0)}$. So $T - A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in \mathcal{A} , $A-T+T=A\in\mathcal{A}$. Let $\beta\neq 0$ and $\beta\neq \alpha$. Then $\frac{\alpha}{\beta}A\in\mathcal{A}$ by the above $\beta=\alpha$ case. So $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{p,q}$.

Theorem 3.7. Let p a fixed natural number. Let A be a linear manifold in $Alg\mathcal{L}$ such that $A_{0,p} \subset A \subset A_0$. Then A is a Lie ideal in AlgL if and only if $A = A_{0,p}$ or $\mathcal{A} = \mathcal{A}_0$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} and let $\mathcal{A} \neq \mathcal{A}_{0,p}$. Then there exists an operaror T in \mathcal{A} such that $T \notin \mathcal{A}_{0,p}$, i.e. $T_{(p,p+1)} \neq 0$. Let $A = (a_{ij}) \in \mathcal{A}_0$. If $a_{p,p+1}=0$, then $A\in\mathcal{A}_{0,p}$ and so $A\in\mathcal{A}$. Let $a_{p,p+1}\neq0$. Let A_1 be an operator defined by

$$\begin{cases} A_{1(p,p+1)} = 0 \\ A_{1(i,j)} = a_{ij} \text{ otherwise.} \end{cases}$$

Then $A_1 \in \mathcal{A}_{0,p}$. Let T_1 be an operator defined by

$$\begin{cases} T_{1(p,p+1)} = 0 \\ T_{1(i,j)} = -T_{(i,j)} \text{ otherwise.} \end{cases}$$

Then $T_1 \in \mathcal{A}_{0,p} \subset \mathcal{A}$. Let $T_2 = T + T_1$. Then $T_2 \in \mathcal{A}$ and $T_{2(p,p+1)} = T_{(p,p+1)}$. Let $\alpha = \frac{a_{p-p+1}}{T_{(p,p+1)}}$. Then $A = \alpha T_2 + A_1$ and $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_0$.

We omit the proof of the following Theorem because it can be given easily by modifying the proof of Theorem 7.

Theorem 3.8. 1) Let k_1, k_2, \cdots be natural numbers such that $k_i < k_{i+1}$. Let $\Omega_1 = \{k_1\}, \ \Omega_2 = \{k_1, k_2\}, \cdots, \ \Omega_n = \{k_1, k_2, \cdots, k_n\}, \cdots, \Omega = \{k_1, k_2, \cdots\}.$ Then

 $\mathcal{A}_{0,\Omega} \subset \cdots \subset \mathcal{A}_{0,\Omega_n} \subset \mathcal{A}_{0,\Omega_{n-1}} \subset \cdots \subset \mathcal{A}_{0,\Omega_2} \subset \mathcal{A}_{0,\Omega_1} = \mathcal{A}_{0,k_1}.$

- 2) Let p be a natural number. Then $\mathcal{D}_{p,\infty} \subset \cdots \subset \mathcal{D}_{p,n} \subset \cdots \subset \mathcal{D}_{p,2} \subset \mathcal{D}_{p,1}$.
- 3)Let p and q be natural numbers such that 1 . Then
- i) $\mathcal{A}_{p,q} \supset \mathcal{A}_{p-1,q} \supset \mathcal{A}_{p-2,q} \supset \cdots \supset \mathcal{A}_{1,q}$
- $ii) \ \mathcal{A}_{p,q} \supset \mathcal{A}_{p-1,q+1} \supset \mathcal{A}_{p-2,q+2} \supset \cdots \supset \mathcal{A}_{1,q+p-1}$ $iii) \mathcal{A}_{p,q} \supset \mathcal{A}_{p,q+1} \supset \mathcal{A}_{p,q+2} \supset \cdots \supset \mathcal{A}_{p,q+n} \supset \cdots$

Theorem 3.9. Let p and q be natural numbers such that p < q. Let A be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{D}_{p,q+1} \subset \mathcal{A} \subset \mathcal{D}_{p,q}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A} = \mathcal{D}_{p,q}$ or $\mathcal{A} = \mathcal{D}_{p,q+1}$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} and let $\mathcal{A} \neq \mathcal{D}_{p,q+1}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{D}_{p,q+1}$. Then $T_{(p,p)} = T_{(p+1,p+1)} = \cdots = T_{(q,q)}$ and $T_{(q,q)} \neq T_{(q+1,q+1)}$. Let $A = (a_{ij}) \in \mathcal{D}_{p,q}$. Then $a_{pp} = a_{p+1} \ _{p+1} = \cdots = a_{q} \ _{q}$. If a_{q+1} $_{q+1} = a_q$ $_q$, then $A \in \mathcal{D}_{p,q+1} \subset \mathcal{A}$. Let a_{q+1} $_{q+1} \neq a_q$ $_q$. Define an operator A_1 by

$$\begin{cases} A_{1(q+1,q+1)} = a_{q \ q} \\ A_{1(i,j)} = a_{ij} \text{ otherwise.} \end{cases}$$

Then $A_1 \in \mathcal{D}_{p,q+1} \subset \mathcal{A}$. Let T_1 be an operator defined by

$$\begin{cases} T_{1(q+1,q+1)} = -T_{(q,q)} \\ T_{1(i,j)} = -T_{(i,j)} \text{ otherwise.} \end{cases}$$

Then $T_1 \in \mathcal{D}_{p,q+1} \subset \mathcal{A}$. Put $T_2 = T + T_1$. Then $T_2 \in \mathcal{A}$.

Let $\alpha = \frac{T_{3,1}}{a_{q+1}} \frac{1}{q+1} \frac{1}{q+1} \frac{1}{q+q}$. Then $A = \alpha T_2 + A_1$ and $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{D}_{p,q}$.

Theorem 3.10. Let p be a natural number. Let A be a linear manifold in $Alg\mathcal{L}$ such that $C_{p,p+1} \subset A \subset \mathcal{E}$, where $\mathcal{E} = \{ T \in Alg\mathcal{L} \mid T_{(p,p)} = 0 = T_{(p+1,p+1)} \}$. Then A is a Lie ideal in $Alg\mathcal{L}$ if and only if $A = C_{p,p+1}$ or $A = \mathcal{E}$.

Proof. Let \mathcal{A} be a Lie ideal in $\mathrm{Alg}\mathcal{L}$ and let $\mathcal{A} \neq \mathcal{C}_{p,p+1}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{C}_{p,p+1}$, i.e. $T_{(p,p+1)} \neq 0$. Let $A = (a_{ij}) \in \mathcal{E}$. If $a_{p \ p+1} = 0$, then $A \in \mathcal{C}_{p,p+1}$ and so $A \in \mathcal{A}$. Let $a_{p \ p+1} \neq 0$. Let A_1 be an operator defined by

$$\begin{cases} A_{1(p,p+1)} = 0 \\ A_{1(i,j)} = a_{ij} \text{ otherwise.} \end{cases}$$

Then $A_1 \in \mathcal{C}_{p,p+1} \subset \mathcal{A}$ and so $A_1 \in \mathcal{A}$. Let T_1 be an operator defined by

$$\begin{cases} T_{1(p,p+1)} = 0 \\ T_{1(i,j)} = -T_{(i,j)} \text{ otherwise.} \end{cases}$$

Since $T_1 \in \mathcal{C}_{p,p+1}$, $T_1 \in \mathcal{A}$. Put $T_2 = T + T_1$. Then $T_2 \in \mathcal{A}$ and $T_{2(p,p+1)} = T_{(p,p+1)}$. Let $\beta = \frac{a_{p-p+1}}{T_{(p,p+1)}}$. Then $\beta T_2 + A_1 = A$ and $A \in \mathcal{A}$. Hence $\mathcal{E} = \mathcal{A}$.

Theorem 3.11. Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{A}_2$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_0$ or $\mathcal{A} = \mathcal{A}_2$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $\mathcal{A}_0 \neq \mathcal{A}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_0$. Since $\mathcal{A} \subset \mathcal{A}_2$, $T_{(i,i)} = \alpha \neq 0 (i = 1, 2, \cdots)$ for some α in \mathbb{C} and $T - \alpha I \in \mathcal{A}_0$. Since $\alpha \neq 0$ and \mathcal{A} is a linear manifold in Alg \mathcal{L} , $T - (T - \alpha I) = \alpha I \in \mathcal{A}$. Since $\alpha \neq 0$, $I \in \mathcal{A}$. Let $A \in \mathcal{A}_2$. If $A_{(i,i)} = 0$ for all $i \in \mathbb{N}$, then $A \in \mathcal{A}_0$ and $A \in \mathcal{A}$. Let $A_{(i,i)} = \beta \neq 0$. Then $A - \beta I \in \mathcal{A}_0 \subset \mathcal{A}$. Since \mathcal{A} is a linear manifold in Alg \mathcal{L} , $(A - \beta I) + \beta I = A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_2$. \square

Theorem 3.12. Let p and q be natural numbers such that p < q. Let A be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{A}_{p,q}^{(1)}$. Then A is a Lie ideal in $Alg\mathcal{L}$ if and only if $A = \mathcal{A}_{p,q}$ or $A = \mathcal{A}_{p,q}^{(1)}$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $\mathcal{A} \neq \mathcal{A}_{p,q}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{p,q}$. i.e. $T_{(p,q)} = \alpha \neq 0$. Let $A = (a_{ij}) \in \mathcal{A}_{p,q}^{(1)}$. If $a_{pq} = 0$, then $A \in \mathcal{A}_{p,q}$ and so $A \in \mathcal{A}$. Let $a_{pq} = \beta \neq 0$. If $\beta = \alpha$, then $T - A \in \mathcal{A}_{p,q}$ and so $T - A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in Alg \mathcal{L} , $T - (T - A) = A \in \mathcal{A}$. Let $\beta \neq \alpha$. Then $\frac{\alpha}{\beta}A \in \mathcal{A}$ by the above case $\beta = \alpha$. So $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{p,q}^{(1)}$. \square

Theorem 3.13. Let p and q be natural numbers such that p < q. Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q}^{(0)} \subset \mathcal{A} \subset \mathcal{A}_{p,q}^{(2)}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}^{(0)}$ or $\mathcal{A} = \mathcal{A}_{p,q}^{(2)}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg}\mathcal{L}$. Let $\mathcal{A} \neq \mathcal{A}_{p,q}^{(0)}$. Then there exists an operaror $T = (t_{ij})$ in \mathcal{A} and $T \notin \mathcal{A}_{p,q}^{(0)}$. i.e. $t_{(pq)} \neq 0$. Let $A = (a_{ij}) \in \mathcal{A}_{p,q}^{(2)}$. If $a_{pq} = 0$, then $A \in \mathcal{A}_{p,q}^{(0)}$ and so $A \in \mathcal{A}$. Let $a_{pq} \neq 0$. If $a_{pq} = t_{pq}$, then $T - A \in \mathcal{A}_{p,q}^{(0)}$ and so $T - A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg}\mathcal{L}$, $T - (T - A) = A \in \mathcal{A}$. Let $a_{pq} \neq t_{pq}$. Then $\frac{t_{pq}}{a_{pq}}A \in \mathcal{A}$ by the above case $a_{pq} = t_{pq}$. So $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{p,q}^{(2)}$.

Theorem 3.14. Let p and q be natural numbers such that p < q. Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q}^{(2)} \subset \mathcal{A} \subset \mathcal{A}_{p,q}^{(1)}$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}^{(1)}$ or $\mathcal{A} = \mathcal{A}_{p,q}^{(2)}$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Suppose that $\mathcal{A} \neq \mathcal{A}_{p,q}^{(2)}$. Then there exists an operaror $T = (t_{ij})$ in \mathcal{A} and $T \notin \mathcal{A}_{p,q}^{(2)}$. i.e. $t_{pp} = t_{p+1} \ _{p+1} = \cdots = t_{qq} \neq 0$. Put $t_{pp} = \alpha$. Let $A = (a_{ij}) \in \mathcal{A}_{p,q}^{(1)}$. If $a_{pp} = a_{p+1} \ _{p+1} = \cdots = a_{qq} = 0$, then $A \in \mathcal{A}_{p,q}^{(2)} \subset \mathcal{A}$. Let $a_{pp} = \beta \neq 0$. Then $T - (\frac{\alpha}{\beta}A)$ is an element of $\mathcal{A}_{p,q}^{(2)}$. Since $T \in \mathcal{A}$, and \mathcal{A} is a linear manifold in Alg \mathcal{L} , $T - (T - (\frac{\alpha}{\beta}A)) = (\frac{\alpha}{\beta}A) \in \mathcal{A}$ and $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{p,q}^{(1)}$.

Theorem 3.15. Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{A}_2$. Then \mathcal{A} is a Lie ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_0$ or $\mathcal{A} = \mathcal{A}_2$.

Proof. Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $\mathcal{A}_0 \neq \mathcal{A}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_0$. Since $\mathcal{A} \subset \mathcal{A}_2$, $T_{(i,i)} = \alpha \neq 0 (i = 1, 2, \cdots)$ for some α in \mathbb{C} and $T - \alpha I \in \mathcal{A}_0$. Since $\alpha \neq 0$ and \mathcal{A} is a linear manifold in Alg \mathcal{L} , $T - (T - \alpha I) = \alpha I \in \mathcal{A}$. Since $\alpha \neq 0$, $I \in \mathcal{A}$. Let $A \in \mathcal{A}_2$. If $A_{(i,i)} = 0$ for all $i \in \mathbb{N}$, then $A \in \mathcal{A}_0$ and $A \in \mathcal{A}$. Let $A_{(i,i)} = \beta \neq 0$. Then $A - \beta I \in \mathcal{A}_0 \subset \mathcal{A}$. Since \mathcal{A} is a linear manifold in Alg \mathcal{L} , $(A - \beta I) + \beta I = A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_2$. \square

Let \mathcal{A} be a Lie ideal in Alg \mathcal{L} . Let $X = \{ (p,q) \mid T_{(p,q)} = 0 \text{ for all } T \in \mathcal{A} \}$. Let i and j be natural numbers and let E_{ij} be the operator whose (i,j)-component is 1 and all other entries are 0. Let k be a natural number. Put $E_n^{(k)} = \sum_{i=1}^n E_{i\ i+k}$, $E^{(k)} = \sum_{i=1}^\infty E_{i\ i+k}$. Then $E_n^{(k)} \longrightarrow E^{(k)}(\text{strongly})$.

Theorem 3.16. Let A be a strongly closed Lie ideal in $Alg\mathcal{L}$ and let k be a natural number. Assume that $X = \emptyset$. Then $E^{(k)} \in A$.

Proof. Since $X = \emptyset$, for each $(i, i+k) \in \mathbb{N} \times \mathbb{N}$ there exists $T^{(i,i+k)} \in \mathcal{A}$ such that $T^{(i,i+k)}_{(i,i+k)} \neq 0$. Let $T^{(i,i+k)'} = E_{i} {}_{i} T^{(i,i+k)} - T^{(i,i+k)} E_{i} {}_{i}$. Then $T^{(i,i+k)'} \in \mathcal{A}$ for all $i \in \mathbb{N}$. $E_{i+k} {}_{i+k} T^{(i,i+k)'} - T^{(i,i+k)'} E_{i+k} {}_{i+k} = T^{(i,i+k)}_{(i,i+k)} E_{i} {}_{i+k}$. Since $T^{(i,i+k)}_{(i,i+k)} \neq 0$, $E_{i} {}_{i+k} \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\mathrm{Alg}\mathcal{L}$, $E^{(k)}_{n} \in \mathcal{A}$. Since $E^{(k)}_{n} \longrightarrow E^{(k)}(\mathrm{strongly})$, $E^{(k)} \in \mathcal{A}$.

References

- Gilfeather, F., Hopenwasser A. and Larson, D., Reflexive algebras with finite width lattices, tensor products, cohomology, compact, J. Funct. Anal. 55, 1984, 176-199.
- Hudson, T.D., Marcoux, L.W. and Sourour, A.R., Lie ideal in Triangular operator algebras, Trans. Amer. Math. Soc. 350 (1998), 3321–3339.
- 3. Jo, Y.S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
- Jo, Y.S. and Choi, T.Y., Isomorphisms of AlgL_n and AlgL_∞, Michigan Math. J. 37 (1990), 305-314.
- Marcoux L.W. and Sourour, A.R., Conjugation-Invariant subspace and Lie ideals in Non-Self-adjoint operator algebras, J. London Math. Soc. (2) 65 (2002), 493-512.
- Kang, J.H., Lie ideals in Tridiagonal Algebra AlgL∞, Bull. of Korean Math. Soc. 52 (2015), 351-361.
- Lee, S.K. and Kang, J.H., Ideals in Tridiagonal Algebra AlgL∞, J. Appl. Math. Informatics 34 (2016), 257-267.

Sang Ki Lee

Dept. of Mathmatics Education, Daegu University Daegu, Daegu, Korea.

e-mail: sangkilee@daegu.ac.kr

Joo Ho Kang

Dept. of Math., Daegu University, Daegu, Korea.

e-mail: jhkang@daegu.ac.kr