LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG \mathcal{L}^{\dagger}

SANG KI LEE AND JOO HO KANG*

Abstract

Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\left\{e_{1}, e_{2}, \cdots\right\}$. Let \mathcal{L} be the subspace lattice generated by the subspaces $\left\{\left[e_{1}\right],\left[e_{1}, e_{2}\right],\left[e_{1}, e_{2}, e_{3}\right], \cdots\right\}$ and let $\operatorname{Alg} \mathcal{L}$ be the algebra of bounded operators which leave invariant all projections in \mathcal{L}. Let p and q be natural numbers $(p<q)$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $T_{(p, q)}=0$ for all T in \mathcal{A}. If \mathcal{A} is a Lie ideal, then $T_{(p, p)}=T_{(p+1, p+1)}=\cdots=T_{(q, q)}$ and $T_{(i, j)}=0, p \leqslant i \leqslant q$ and $i<j \leqslant q$ for all T in \mathcal{A}.

AMS Mathematics Subject Classification : 47L35 Key words and phrases : Linear manifold, Lie ideal, The upper triangular operator algebra.

1. Introduction

Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\left\{e_{1}, e_{2}, \cdots\right\}$ and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H}. If $x_{1}, x_{2}, \cdots, x_{k}$ are vectors in \mathcal{H}, we denote by $\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ the closed subspace spanned by the vectors $x_{1}, x_{2}, \cdots, x_{k}$. A subspace lattice is a strongly closed lattice of orthogonal projections acting on \mathcal{H}. In this paper, we denote by \mathcal{L} the subspace lattice generated by the subspaces $\left\{\left[e_{1}\right],\left[e_{1}, e_{2}\right]\left[e_{1}, e_{2}, e_{3}\right], \cdots\right\}$. By $\operatorname{Alg} \mathcal{L}$, we mean the algebra of bounded operators which leave invariant all projections in \mathcal{L}. It is easy to see that all such operators have the following matrix form

[^0]\[

\left($$
\begin{array}{ccccccc}
* & * & * & * & * & & \\
& * & * & * & \ddots & \ddots & \\
& & * & * & * & \ddots & \ddots \\
& & & * & * & * & \ddots
\end{array}
$$\right)
\]

where all non-starred entries are zero. We call the algebra $\operatorname{Alg} \mathcal{L}$ by the upper triangular operator algebra.

The Lie product in the algebra $\operatorname{Alg} \mathcal{L}$ is defined by

$$
[A, B]=A B-B A
$$

for operators A and B in $\operatorname{Alg} \mathcal{L}$. A linear manifold \mathcal{A} in $\operatorname{Alg} \mathcal{L}$ is called a Lie ideal in $\operatorname{Alg} \mathcal{L}$ if $[A, X]$ is in \mathcal{A} for all A in $\operatorname{Alg} \mathcal{L}$ and all X in \mathcal{A}.

In this paper we find examples of Lie ideals and investigate relationships between Lie ideals in the algebra $\operatorname{Alg} \mathcal{L}$. Let I be the identity operator on \mathcal{H} in this paper. Let \mathbb{C} be the set of all complex numbers and let $\mathbb{N}=\{1,2, \cdots\}$.

2. Examples of Lie ideals in $\operatorname{Alg} \mathcal{L}$

If we know the following facts, then we can easily prove the following examples.
Let $A=\left(a_{i j}\right)$ and $T=\left(t_{i j}\right)$ be operators in $\operatorname{Alg} \mathcal{L}$. Then
(1) the (p, p)-entry of $A T$ is $a_{p p} t_{p p}$ for all $p=1,2, \cdots$
(2) the (p, p)-entry of $T A$ is $t_{p p} a_{p p}$ for all $p=1,2, \cdots$
(3) the (p, q)-entry of $A T$ is $a_{p p} t_{p q}+a_{p p+1} t_{p+1}{ }_{q}+\cdots+a_{p q} t_{q q}(p<q)$
(4) the (p, q)-entry of $T A$ is $t_{p p} a_{p q}+t_{p p+1} a_{p+1}{ }_{q}+\cdots+t_{p q} a_{q q}(p<q)$
(5) the (p, p)-entry of $A T-T A$ is 0 for all $p=1,2, \cdots$
(6) the (p, q)-entry of $A T-T A$ is $a_{p p} t_{p q}+a_{p p+1} t_{p+1} q+\cdots+a_{p q} t_{q q}-$ $\left(t_{p p} a_{p q}+t_{p p+1} a_{p+1}+\cdots+t_{p q} a_{q q}\right)$

We denote the (i, j)-component of T by $T_{(i, j)}$.
Example 2.1. i)Let $\mathcal{A}_{0}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(i, i)}=0, i \in \mathbb{N}\right\}$. Then \mathcal{A}_{0} is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii) Let Γ be a nonempty subset of \mathbb{N} and let $\mathcal{A}_{\Gamma}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(i, i)}=0, i \in\right.$ $\Gamma\}$. Then \mathcal{A}_{Γ} is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

If $\Gamma=\emptyset$, then $\mathcal{A}_{\Gamma}=\operatorname{Alg} \mathcal{L}$. If $\Gamma=\mathbb{N}$, then $\mathcal{A}_{\Gamma}=\mathcal{A}_{0}$.
Example 2.2. i) Let I be the identity operator on \mathcal{H} and let $\mathcal{A}_{1}=\{\alpha I \mid \alpha \in \mathbb{C}\}$. Then \mathcal{A}_{1} is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii) Let $\mathcal{A}_{2}=\left\{\alpha I+T \mid T \in \mathcal{A}_{0}, \alpha \in \mathbb{C}\right\}$. Then \mathcal{A}_{2} is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Example 2.3. i)Let p be a natural number and let $\mathcal{A}_{0, p}=\left\{T \in \mathcal{A}_{0} \mid T_{(p, p+1)}=\right.$ $0\}$. Then $\mathcal{A}_{0, p}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii)Let $\Lambda=\left\{p_{1}, p_{2}, \cdots\right\}$ be a subset of \mathbb{N}. Let $\mathcal{A}_{0, \Lambda}=\left\{T \in \mathcal{A}_{0} \mid T_{\left(p_{i}, p_{i}+1\right)}=\right.$ $0, i=1,2, \cdots\}$. Then $\mathcal{A}_{0, \Lambda}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
iii)Let p be a natural number and let $\mathcal{A}_{2, p}=\left\{T \in \mathcal{A}_{2} \mid T_{(p, p+1)}=0\right\}$. Then $\mathcal{A}_{2, p}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Example 2.4. Let p and q be natural numbers such that $p<q$.
i)Let $\mathcal{B}_{p, q}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, q)}=0\right\}$. Then $\mathcal{B}_{p, q}$ is not a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii)Let $\mathcal{B}^{(1)}{ }_{p, q}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, k)}=0, k=p, p+1, \cdots, q\right\}$. Then $\mathcal{B}^{(1)}{ }_{p, q}$ is not a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
iii)Let $\mathcal{B}^{(2)}{ }_{p, q}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(k, q)}=0, k=p, p+1, \cdots, q\right\}$. Then $\mathcal{B}^{(2)}{ }_{p, q}$ is not a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
iv)Let $\mathcal{C}_{p, q}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, i)}=0=T_{(j, q)}, p \leqslant i, j \leqslant q\right\}$. If $q=p+1$, then $\mathcal{C}_{p, q}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$. If $p+1<q$, then $\mathcal{C}_{p, q}$ is not a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Example 2.5. Let p and q be natural numbers such that $p<q$.
i)Let $\mathcal{D}_{p, q}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, p)}=T_{(p+1, p+1)}=\cdots=T_{(q, q)}\right\}$. Then $\mathcal{D}_{p, q}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii)Let $\mathcal{D}_{p, \infty}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, p)}=T_{(p+1, p+1)}=\cdots\right\}$. Then $\mathcal{D}_{p, \infty}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Example 2.6. Let p and q be natural numbers such that $p<q$.
i)Let $\mathcal{A}_{p, q}=\left\{T \in \mathcal{D}_{p, q} \mid T_{(i, j)}=0, p \leqslant i \leqslant q-1\right.$ and $\left.i<j \leqslant q\right\}$. Then $\mathcal{A}_{p, q}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii)Let $\mathcal{A}_{p, q}^{(0)}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(i, j)}=0, p \leqslant i \leqslant q\right.$ and $\left.i \leqslant j \leqslant q\right\}$. Then $\mathcal{A}_{p, q}^{(0)}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Proof. i) and ii) $\mathcal{A}_{p, q}$ is clearly a linear manifold in $\operatorname{Alg} \mathcal{L}$. Let $T=\left(t_{i j}\right) \in \mathcal{A}_{p, q}$ and let $A=\left(a_{i j}\right) \in \operatorname{Alg} \mathcal{L}$. Then $(A T-T A)_{(p, p)}=\cdots=(A T-T A)_{(q, q)}=0$ and so $A T-T A \in \mathcal{D}_{p, q}$. For $p \leqslant i \leqslant q-1$ and $i<j \leqslant q,(A T-T A)_{(i, j)}$ $=a_{i i} t_{i j}+a_{i}{ }_{i+1} t_{i+1 j}+\cdots+a_{i j} t_{j j}-\left(t_{i i} a_{i j}+t_{i+1} a_{i+1 j}+\cdots+t_{i j} a_{j j}\right)=$ $a_{i j} t_{j j}-t_{i i} a_{i j}=a_{i j}\left(t_{j j}-t_{i i}\right)=0$ because $t_{j j}=t_{i i}$. So $A T-T A \in \mathcal{A}_{p, q}$. Hence $\mathcal{A}_{p, q}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
Example 2.7. Let p and q be natural numbers such that $p<q$.
i)Let $\mathcal{A}_{p, q}^{(1)}=\left\{T \in \mathcal{D}_{p, q} \mid T_{(p, i)}=0\right.$ and $T_{(k, j)}=0, i=p+1, \cdots, q-1, p+1 \leqslant$ $k \leqslant q-1, k<j \leqslant q\}$. Then $\mathcal{A}_{p, q}^{(1)}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.
ii)Let $\mathcal{A}_{p, q}^{(2)}=\left\{T \in \operatorname{Alg} \mathcal{L} \mid T_{(p, i)}=0\right.$ and $T_{(k, j)}=0, p \leqslant i \leqslant q-1, p+1 \leqslant$ $k \leqslant q-1, k \leqslant j \leqslant q\}$. Then $\mathcal{A}_{p, q}^{(2)}$ is a Lie ideal in $\operatorname{Alg} \mathcal{L}$.

Proof. i) and ii) $\mathcal{A}_{p, q}^{(1)}$ and $\mathcal{A}_{p, q}^{(2)}$ are linear manifolds in $\operatorname{Alg} \mathcal{L}$. Let $T=\left(t_{i j}\right) \in \mathcal{A}_{p, q}^{(1)}$ and let $A=\left(a_{i j}\right) \in \operatorname{Alg} \mathcal{L}$. Then $(A T-T A)_{(p, p)}=\cdots=(A T-T A)_{(q, q)}=0$.
$(A T-T A)_{(p, i)}=a_{p p} t_{p i}+a_{p p+1} t_{p+1 i}+\cdots+a_{p i} t_{i i}-\left(t_{p p} a_{p i}+t_{p p+1} a_{p+1 i}+\right.$ $\left.\cdots+t_{p i} a_{i i}\right)=0$ because $t_{i i}=t_{p p}$ for $i=p+1, \cdots, q-1$.
$(A T-T A)_{(k, j)}=a_{k k} t_{k j}+a_{k k+1} t_{k+1}+\cdots+a_{k j} t_{j j}-\left(t_{k k} a_{k j}+t_{k k+1} a_{k+1}+\right.$ $\left.\cdots+t_{k j} a_{j j}\right)=0$ because $t_{k k}=t_{j j}$ for $p+1 \leqslant k<q$ and $k \leqslant j \leqslant q$.

3. Main results

Theorem 3.1. Let p and q be natural numbers $(p<q)$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg\mathcal {L}}$ such that $\{0\} \subsetneq \mathcal{A} \subset \mathcal{B}_{p, q}$. If \mathcal{A} is a Lie ideal in Alg \mathcal{L}, then $T_{(p, p)}=T_{(p+1, p+1)}=\cdots=T_{(q, q)}$ and $T_{(i, j)}=0, p \leqslant i \leqslant q$ and $i<j \leqslant q$ for all T in \mathcal{A} i.e. $\mathcal{A} \subset \mathcal{A}_{p, q}$.
Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $T=\left(t_{i j}\right) \in \mathcal{A}$ and let $A=\left(a_{i j}\right) \in$ $\operatorname{Alg} \mathcal{L}$. Then $t_{p q}=0$ and
$0=(A T-T A)_{(p, q)}=a_{p p} t_{p q}+a_{p p+1} t_{p+1 q}+\cdots+a_{p q} t_{q q}-$
$\left(t_{p p} a_{p q}+t_{p p+1} a_{p+1 q}+\cdots+t_{p q} a_{q q}\right) \cdots \cdots \cdots\left(*_{1}\right)$.
Since $\left(*_{1}\right)$ holds for all A in $\operatorname{Alg} \mathcal{L}, t_{p p}=t_{q q}, t_{p+1 q}=0, \cdots, t_{q-1 q}=0$ and $t_{p p+1}=0, t_{p p+2}=0, \cdots, t_{p q}=0$.
$0=(A T-T A)_{(p+1, q)}=a_{p+1 p+1} t_{p+1 q}+a_{p+1 p+2} t_{p+2 q}+\cdots+a_{p+1{ }_{q}} t_{q q}-$
$\left(t_{p+1 p+1} a_{p+1}{ }_{q}+t_{p+1 p+2} a_{p+2}{ }_{q}+\cdots+t_{p+1}{ }_{q} a_{q q}\right) \cdots \cdots \cdots\left(*_{2}\right)$.
Since $\left(*_{2}\right)$ holds for all A in $\operatorname{Alg} \mathcal{L}, t_{p+1 p+1}=t_{q q}, t_{p+1 p+2}=0, \cdots$ and $t_{p+1 q}=0$.
$0=(A T-T A)_{(q-1, q)}=a_{q-1 q-1} t_{q-1}+a_{q-1}{ }_{q} t_{q q}-\left(t_{q-1 q-1} a_{q-1 q}+t_{q-1}{ }_{q} a_{q q}\right)$, $t_{q-1 q-1}=t_{q q}, t_{q-1 q}=0$. Hence $t_{p p}=\cdots=t_{q q}, t_{i j}=0$, where $p \leqslant i \leqslant q$ and $i<j \leqslant q$. i.e. $\mathcal{A} \subset \mathcal{A}_{p, q}$.

We can prove Thoerem 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.5 by the same way with the proof of Theorem 3.1.

Theorem 3.2. Let p and q be natural numbers $(p<q)$. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{A}_{p, q} \subset \mathcal{A} \subset \mathcal{B}_{p, q}$. Then \mathcal{A} is a Lie ideal in $\operatorname{Alg\mathcal {L}}$ if and only if $\mathcal{A}=\mathcal{A}_{p, q}$.
Theorem 3.3. Let p and q be natural numbers $(p<q)$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $\mathcal{A}_{p, q} \subset \mathcal{A} \subset \mathcal{B}^{(1)}{ }_{p, q}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}$.
Theorem 3.4. Let p and q be natural numbers $(p<q)$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $\mathcal{A}_{p, q} \subset \mathcal{A} \subset \mathcal{B}^{(2)}{ }_{p, q}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}$.
Theorem 3.5. Let p and q be natural numbers $(p+1<q)$. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{A}_{p, q} \subset \mathcal{A} \subset \mathcal{C}_{p, q}$. Then \mathcal{A} is a Lie ideal in $\operatorname{Alg\mathcal {L}}$ if and only if $\mathcal{A}=\mathcal{A}_{p, q}$.

Theorem 3.6. Let p and q be natural numbers such that $p<q$. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{A}_{p, q}^{(0)} \subset \mathcal{A} \subset \mathcal{A}_{p, q}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}^{(0)}$ or $\mathcal{A}=\mathcal{A}_{p, q}$.
Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $\mathcal{A} \neq \mathcal{A}_{p, q}^{(0)}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{p, q}^{(0)}$. Since T is in \mathcal{A}, T is in $\mathcal{A}_{p, q}$. So there is α in \mathbb{C} such that $T_{(p, p)}=T_{(p+1, p+1)}=\cdots=T_{(q, q)}=\alpha \neq 0$ and $T_{(i, j)}=0, p \leqslant i \leqslant q$
and $i<j \leqslant q$. Let $A \in \mathcal{A}_{p, q}$. Then there is a complex number β such that $A_{(p, p)}=A_{(p+1, p+1)}=\cdots=A_{(q, q)}=\beta$. If $\beta=0$, then $A \in \mathcal{A}_{p, q}^{(0)}$ and so $A \in \mathcal{A}$. If $\beta=\alpha$, then $T-A \in \mathcal{A}_{p, q}^{(0)}$. So $T-A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in \mathcal{A}, $A-T+T=A \in \mathcal{A}$. Let $\beta \neq 0$ and $\beta \neq \alpha$. Then $\frac{\alpha}{\beta} A \in \mathcal{A}$ by the above $\beta=\alpha$ case. So $A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{p, q}$.

Theorem 3.7. Let p a fixed natural number. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{A}_{0, p} \subset \mathcal{A} \subset \mathcal{A}_{0}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{0, p}$ or $\mathcal{A}=\mathcal{A}_{0}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$ and let $\mathcal{A} \neq \mathcal{A}_{0, p}$. Then there exists an operaror T in \mathcal{A} such that $T \notin \mathcal{A}_{0, p}$, i.e. $T_{(p, p+1)} \neq 0$. Let $A=\left(a_{i j}\right) \in \mathcal{A}_{0}$. If $a_{p p+1}=0$, then $A \in \mathcal{A}_{0, p}$ and so $A \in \mathcal{A}$. Let $a_{p p+1} \neq 0$. Let A_{1} be an operator defined by

$$
\left\{\begin{array}{l}
A_{1(p, p+1)}=0 \\
A_{1(i, j)}=a_{i j} \text { otherwise }
\end{array}\right.
$$

Then $A_{1} \in \mathcal{A}_{0, p}$. Let T_{1} be an operator defined by

$$
\left\{\begin{array}{l}
T_{1(p, p+1)}=0 \\
T_{1(i, j)}=-T_{(i, j)} \text { otherwise }
\end{array}\right.
$$

Then $T_{1} \in \mathcal{A}_{0, p} \subset \mathcal{A}$. Let $T_{2}=T+T_{1}$. Then $T_{2} \in \mathcal{A}$ and $T_{2(p, p+1)}=T_{(p, p+1)}$. Let $\alpha=\frac{a_{p p+1}}{T_{(p, p+1)}}$. Then $A=\alpha T_{2}+A_{1}$ and $A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{0}$.

We omit the proof of the following Theorem because it can be given easily by modifying the proof of Theorem 7 .

Theorem 3.8. 1) Let k_{1}, k_{2}, \cdots be natural numbers such that $k_{i}<k_{i+1}$. Let $\Omega_{1}=\left\{k_{1}\right\}, \Omega_{2}=\left\{k_{1}, k_{2}\right\}, \cdots, \Omega_{n}=\left\{k_{1}, k_{2}, \cdots, k_{n}\right\}, \cdots, \Omega=\left\{k_{1}, k_{2}, \cdots\right\}$. Then
$\mathcal{A}_{0, \Omega} \subset \cdots \subset \mathcal{A}_{0, \Omega_{n}} \subset \mathcal{A}_{0, \Omega_{n-1}} \subset \cdots \subset \mathcal{A}_{0, \Omega_{2}} \subset \mathcal{A}_{0, \Omega_{1}}=\mathcal{A}_{0, k_{1}}$.
2)Let p be a natural number. Then $\mathcal{D}_{p, \infty} \subset \cdots \subset \mathcal{D}_{p, n} \subset \cdots \subset \mathcal{D}_{p, 2} \subset \mathcal{D}_{p, 1}$.
3)Let p and q be natural numbers such that $1<p<q$. Then
i) $\mathcal{A}_{p, q} \supset \mathcal{A}_{p-1, q} \supset \mathcal{A}_{p-2, q} \supset \cdots \supset \mathcal{A}_{1, q}$
ii) $\mathcal{A}_{p, q} \supset \mathcal{A}_{p-1, q+1} \supset \mathcal{A}_{p-2, q+2} \supset \cdots \supset \mathcal{A}_{1, q+p-1}$
iii) $\mathcal{A}_{p, q} \supset \mathcal{A}_{p, q+1} \supset \mathcal{A}_{p, q+2} \supset \cdots \supset \mathcal{A}_{p, q+n} \supset \cdots$

Theorem 3.9. Let p and q be natural numbers such that $p<q$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $\mathcal{D}_{p, q+1} \subset \mathcal{A} \subset \mathcal{D}_{p, q}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{D}_{p, q}$ or $\mathcal{A}=\mathcal{D}_{p, q+1}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$ and let $\mathcal{A} \neq \mathcal{D}_{p, q+1}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{D}_{p, q+1}$. Then $\left.T_{(p, p)}=T_{(p+1, p+1)}=\cdots=T_{(q, q)}\right\}$ and $T_{(q, q)} \neq T_{(q+1, q+1)}$. Let $A=\left(a_{i j}\right) \in \mathcal{D}_{p, q}$. Then $a_{p p}=a_{p+1 p+1}=\cdots=a_{q q}$. If
$a_{q+1 q+1}=a_{q q}$, then $A \in \mathcal{D}_{p, q+1} \subset \mathcal{A}$. Let $a_{q+1}{ }_{q+1} \neq a_{q q}$. Define an operator A_{1} by

$$
\left\{\begin{array}{l}
A_{1_{(q+1, q+1)}}=a_{q} q \\
A_{1_{(i, j)}}=a_{i j} \text { otherwise. }
\end{array}\right.
$$

Then $A_{1} \in \mathcal{D}_{p, q+1} \subset \mathcal{A}$. Let T_{1} be an operator defined by

$$
\left\{\begin{array}{l}
T_{1(q+1, q+1)}=-T_{(q, q)} \\
T_{1(i, j)}=-T_{(i, j)} \text { otherwise }
\end{array}\right.
$$

Then $T_{1} \in \mathcal{D}_{p, q+1} \subset \mathcal{A}$. Put $T_{2}=T+T_{1}$. Then $T_{2} \in \mathcal{A}$.
Let $\alpha=\frac{a_{q+1 q+1}-a_{q} q}{T_{(q+1, q+1)}-T_{(q, q)}}$. Then $A=\alpha T_{2}+A_{1}$ and $A \in \mathcal{A}$. Hence $\mathcal{A}=$ $\mathcal{D}_{p, q}$.

Theorem 3.10. Let p be a natural number. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{C}_{p, p+1} \subset \mathcal{A} \subset \mathcal{E}$, where $\mathcal{E}=\left\{T \in \operatorname{Alg\mathcal {L}} \mid T_{(p, p)}=0=T_{(p+1, p+1)}\right\}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{C}_{p, p+1}$ or $\mathcal{A}=\mathcal{E}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$ and let $\mathcal{A} \neq \mathcal{C}_{p, p+1}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{C}_{p, p+1}$, i.e. $T_{(p, p+1)} \neq 0$. Let $A=\left(a_{i j}\right) \in \mathcal{E}$. If $a_{p p+1}=0$, then $A \in \mathcal{C}_{p, p+1}$ and so $A \in \mathcal{A}$. Let $a_{p p+1} \neq 0$. Let A_{1} be an operator defined by

$$
\left\{\begin{array}{l}
A_{1_{(p, p+1)}}=0 \\
A_{1_{(i, j)}}=a_{i j} \text { otherwise }
\end{array}\right.
$$

Then $A_{1} \in \mathcal{C}_{p, p+1} \subset \mathcal{A}$ and so $A_{1} \in \mathcal{A}$. Let T_{1} be an operator defined by

$$
\left\{\begin{array}{l}
T_{1(p, p+1)}=0 \\
T_{1_{(i, j)}}=-T_{(i, j)} \text { otherwise }
\end{array}\right.
$$

Since $T_{1} \in \mathcal{C}_{p, p+1}, T_{1} \in \mathcal{A}$. Put $T_{2}=T+T_{1}$. Then $T_{2} \in \mathcal{A}$ and $T_{2(p, p+1)}=$ $T_{(p, p+1)}$. Let $\beta=\frac{a_{p p+1}}{T_{(p, p+1)}}$. Then $\beta T_{2}+A_{1}=A$ and $A \in \mathcal{A}$. Hence $\mathcal{E}=\mathcal{A}$.

Theorem 3.11. Let \mathcal{A} be a linear manifold in $\operatorname{Alg\mathcal {L}}$ such that $\mathcal{A}_{0} \subset \mathcal{A} \subset \mathcal{A}_{2}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{0}$ or $\mathcal{A}=\mathcal{A}_{2}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $\mathcal{A}_{0} \neq \mathcal{A}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{0}$. Since $\mathcal{A} \subset \mathcal{A}_{2}, T_{(i, i)}=\alpha \neq 0(i=1,2, \cdots)$ for some α in \mathbb{C} and $T-\alpha I \in \mathcal{A}_{0}$. Since $\alpha \neq 0$ and \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}$, $T-(T-\alpha I)=\alpha I \in \mathcal{A}$. Since $\alpha \neq 0, I \in \mathcal{A}$. Let $A \in \mathcal{A}_{2}$. If $A_{(i, i)}=0$ for all $i \in \mathbb{N}$, then $A \in \mathcal{A}_{0}$ and $A \in \mathcal{A}$. Let $A_{(i, i)}=\beta \neq 0$. Then $A-\beta I \in \mathcal{A}_{0} \subset \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L},(A-\beta I)+\beta I=A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{2}$.

Theorem 3.12. Let p and q be natural numbers such that $p<q$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $\mathcal{A}_{p, q} \subset \mathcal{A} \subset \mathcal{A}_{p, q}^{(1)}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}$ or $\mathcal{A}=\mathcal{A}_{p, q}^{(1)}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $\mathcal{A} \neq \mathcal{A}_{p, q}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{p, q}$. i.e. $T_{(p, q)}=\alpha \neq 0$. Let $A=\left(a_{i j}\right) \in \mathcal{A}_{p, q}^{(1)}$. If $a_{p q}=0$, then $A \in \mathcal{A}_{p, q}$ and so $A \in \mathcal{A}$. Let $a_{p q}=\beta \neq 0$. If $\beta=\alpha$, then $T-A \in \mathcal{A}_{p, q}$ and so $T-A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}, T-(T-A)=A \in \mathcal{A}$. Let $\beta \neq \alpha$. Then $\frac{\alpha}{\beta} A \in \mathcal{A}$ by the above case $\beta=\alpha$. So $A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{p, q}^{(1)}$.

Theorem 3.13. Let p and q be natural numbers such that $p<q$. Let \mathcal{A} be a linear manifold in $\operatorname{Alg} \mathcal{L}$ such that $\mathcal{A}_{p, q}^{(0)} \subset \mathcal{A} \subset \mathcal{A}_{p, q}^{(2)}$. Then \mathcal{A} is a Lie ideal in Alg \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}^{(0)}$ or $\mathcal{A}=\mathcal{A}_{p, q}^{(2)}$.
Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $\mathcal{A} \neq \mathcal{A}_{p, q}^{(0)}$. Then there exists an operaror $T=\left(t_{i j}\right)$ in \mathcal{A} and $T \notin \mathcal{A}_{p, q}^{(0)}$. i.e. $t_{(p q)} \neq 0$. Let $A=\left(a_{i j}\right) \in \mathcal{A}_{p, q}^{(2)}$. If $a_{p q}=0$, then $A \in \mathcal{A}_{p, q}^{(0)}$ and so $A \in \mathcal{A}$. Let $a_{p q} \neq 0$. If $a_{p q}=t_{p q}$, then $T-A \in \mathcal{A}_{p, q}^{(0)}$ and so $T-A \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}, T-(T-A)=A \in \mathcal{A}$. Let $a_{p q} \neq t_{p q}$. Then $\frac{t_{p q}}{a_{p q}} A \in \mathcal{A}$ by the above case $a_{p q}=t_{p q}$. So $A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{p, q}^{(2)}$.

Theorem 3.14. Let p and q be natural numbers such that $p<q$. Let \mathcal{A} be a linear manifold in Alg \mathcal{L} such that $\mathcal{A}_{p, q}^{(2)} \subset \mathcal{A} \subset \mathcal{A}_{p, q}^{(1)}$. Then \mathcal{A} is a Lie ideal in AlgL \mathcal{L} if and only if $\mathcal{A}=\mathcal{A}_{p, q}^{(1)}$ or $\mathcal{A}=\mathcal{A}_{p, q}^{(2)}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Suppose that $\mathcal{A} \neq \mathcal{A}_{p, q}^{(2)}$. Then there exists an operaror $T=\left(t_{i j}\right)$ in \mathcal{A} and $T \notin \mathcal{A}_{p, q}^{(2)}$. i.e. $t_{p p}=t_{p+1}{ }_{p+1}=\cdots=t_{q q} \neq 0$. Put $t_{p p}=\alpha$. Let $A=\left(a_{i j}\right) \in \mathcal{A}_{p, q}^{(1)}$. If $a_{p p}=a_{p+1 p+1}=\cdots=a_{q q}=0$, then $A \in \mathcal{A}_{p, q}^{(2)} \subset \mathcal{A}$. Let $a_{p p}=\beta \neq 0$. Then $T-\left(\frac{\alpha}{\beta} A\right)$ is an element of $\mathcal{A}_{p, q}^{(2)}$. Since $T \in \mathcal{A}$, and \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}, T-\left(T-\left(\frac{\alpha}{\beta} A\right)\right)=\left(\frac{\alpha}{\beta} A\right) \in \mathcal{A}$ and $A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{p, q}^{(1)}$.

Theorem 3.15. Let \mathcal{A} be a linear manifold in $\operatorname{Alg\mathcal {L}}$ such that $\mathcal{A}_{0} \subset \mathcal{A} \subset \mathcal{A}_{2}$. Then \mathcal{A} is a Lie ideal in $\operatorname{Alg\mathcal {L}}$ if and only if $\mathcal{A}=\mathcal{A}_{0}$ or $\mathcal{A}=\mathcal{A}_{2}$.

Proof. Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $\mathcal{A}_{0} \neq \mathcal{A}$. Then there exists an operaror T in \mathcal{A} and $T \notin \mathcal{A}_{0}$. Since $\mathcal{A} \subset \mathcal{A}_{2}, T_{(i, i)}=\alpha \neq 0(i=1,2, \cdots)$ for some α in \mathbb{C} and $T-\alpha I \in \mathcal{A}_{0}$. Since $\alpha \neq 0$ and \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}$, $T-(T-\alpha I)=\alpha I \in \mathcal{A}$. Since $\alpha \neq 0, I \in \mathcal{A}$. Let $A \in \mathcal{A}_{2}$. If $A_{(i, i)}=0$ for all $i \in \mathbb{N}$, then $A \in \mathcal{A}_{0}$ and $A \in \mathcal{A}$. Let $A_{(i, i)}=\beta \neq 0$. Then $A-\beta I \in \mathcal{A}_{0} \subset \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L},(A-\beta I)+\beta I=A \in \mathcal{A}$. Hence $\mathcal{A}=\mathcal{A}_{2}$.

Let \mathcal{A} be a Lie ideal in $\operatorname{Alg} \mathcal{L}$. Let $X=\left\{(p, q) \mid T_{(p, q)}=0\right.$ for all $\left.T \in \mathcal{A}\right\}$. Let i and j be natural numbers and let $E_{i j}$ be the operator whose (i, j) - component is 1 and all other entries are 0 . Let k be a natural number. Put $E_{n}^{(k)}=\sum_{i=1}^{n} E_{i}{ }_{i+k}$, $E^{(k)}=\sum_{i=1}^{\infty} E_{i+k}$. Then $E_{n}^{(k)} \longrightarrow E^{(k)}$ (strongly).

Theorem 3.16. Let \mathcal{A} be a strongly closed Lie ideal in $\operatorname{Alg} \mathcal{L}$ and let k be a natural number. Assume that $X=\emptyset$. Then $E^{(k)} \in \mathcal{A}$.

Proof. Since $X=\emptyset$, for each $(i, i+k) \in \mathbb{N} \times \mathbb{N}$ there exists $T^{(i, i+k)} \in \mathcal{A}$ such that $T_{(i, i+k)}^{(i, i+k)} \neq 0$. Let $T^{(i, i+k)^{\prime}}=E_{i}{ }_{i} T^{(i, i+k)}-T^{(i, i+k)} E_{i}{ }_{i}$. Then $T^{(i, i+k)^{\prime}} \in \mathcal{A}$ for all $i \in \mathbb{N}$. $\quad E_{i+k i+k} T^{(i, i+k)^{\prime}}-T^{(i, i+k)^{\prime}} E_{i+k i+k}=T_{(i, i+k)}^{(i, i+k)} E_{i}{ }_{i+k}$. Since $T_{(i, i+k)}^{(i, i+k)} \neq 0, E_{i+k} \in \mathcal{A}$. Since \mathcal{A} is a linear manifold in $\operatorname{Alg} \mathcal{L}, E_{n}^{(k)} \in \mathcal{A}$. Since $E_{n}^{(k)} \longrightarrow E^{(k)}$ (strongly), $E^{(k)} \in \mathcal{A}$.

References

1. Gilfeather, F., Hopenwasser A. and Larson, D., Reflexive algebras with finite width lattices, tensor products, cohomology, compact, J. Funct. Anal. 55, 1984, 176-199.
2. Hudson, T.D., Marcoux, L.W. and Sourour, A.R., Lie ideal in Triangular operator algebras, Trans. Amer. Math. Soc. 350 (1998), 3321-3339.
3. Jo, Y.S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
4. Jo, Y.S. and Choi, T.Y., Isomorphisms of $\operatorname{Alg} \mathcal{L}_{n}$ and $\operatorname{Alg} \mathcal{L}_{\infty}$, Michigan Math. J. 37 (1990), 305-314.
5. Marcoux L.W. and Sourour, A.R., Conjugation-Invariant subspace and Lie ideals in Non-Self-adjoint operator algebras, J. London Math. Soc. (2) 65 (2002), 493-512.
6. Kang, J.H., Lie ideals in Tridiagonal Algebra Alg \mathcal{L}_{∞}, Bull. of Korean Math. Soc. 52 (2015), 351-361.
7. Lee, S.K. and Kang, J.H., Ideals in Tridiagonal Algebra Alg \mathcal{L}_{∞}, J. Appl. Math. Informatics 34 (2016), 257-267.

Sang Ki Lee

Dept. of Mathmatics Education, Daegu University Daegu, Daegu, Korea.
e-mail: sangkilee@daegu.ac.kr

Joo Ho Kang

Dept. of Math., Daegu University, Daegu, Korea.
e-mail: jhkang@daegu.ac.kr

[^0]: Received November 11, 2017. Revised December 6, 2017. Accepted February 13, 2018. * Corresponding author.
 ${ }^{\dagger}$ This work was supported by Daegu University Grant(2017)
 (c) 2018 Korean SIGCAM and KSCAM.

