References
- E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74. Cambridge University Press, Cambridge-New York, 1980
- W. Arveson, An Invitation to C*-Algebras, Graduate Texts in Mathematics, no. 39. Springer-Verlag, New York-Heidelberg, 1976
- A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), no. 2, 917-932 https://doi.org/10.2307/2154659
- A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), no. 2, 431-444 https://doi.org/10.1006/jabr.1996.0075
- A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366 https://doi.org/10.1006/aima.1998.1775
- A. Van Daele and Y. H. Zhang, Multiplier Hopf algebras of discrete type, J. Algebra 214 (1999), no. 2, 400-417 https://doi.org/10.1006/jabr.1998.7717
- E. G. Effros and Z. J. Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math. 5 (1994), no. 5, 681-723 https://doi.org/10.1142/S0129167X94000358
- W. Fulton and J. Harrie, Representation Theory: A First Course, Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991
- L. N. Jiang, M. Z. Guo, and M. Qian, The duality theory of a finite dimensional discrete quantum group, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3537-3547 https://doi.org/10.1090/S0002-9939-04-07397-6
- L. N. Jiang and Z. D. Wang, The Schur-Weyl duality between quantum group of type A and Hecke algebra, Adv. Math. (China) 29 (2000), no. 5, 444-456
- M. Jimbo, A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252 https://doi.org/10.1007/BF00400222
- G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990
- P. Podles and S. L. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), no. 2, 381-431 https://doi.org/10.1007/BF02473358
- P. M. Soltan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245-1270
- M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series W. A. Benjamin, Inc., New York 1969
- K. Szlachanyi and P. Vecsernyes, Quantum symmetry and braid group statistics in G-spin models, Comm. Math. Phys. 156 (1993), no. 1, 127-168 https://doi.org/10.1007/BF02096735
- H. Weyl, The Classical Groups. Their Invariants and Representations., Princeton University Press, Princeton, N.J., 1939
- S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181 https://doi.org/10.2977/prims/1195176848
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665 https://doi.org/10.1007/BF01219077
Cited by
- On projective representations for compact quantum groups vol.260, pp.12, 2011, https://doi.org/10.1016/j.jfa.2011.02.022
- C*-Homomorphisms and duality of C*-discrete quantum groups vol.50, pp.2, 2009, https://doi.org/10.1007/s11202-009-0041-4