References
- E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators In:Advances in invariant subspaces and other results of Operator Theory:Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
- I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
- N. Dunford and J.T. Schwartz, Linear operators, Part I, Wiley, New York, 1967.
- N. Dunford and J.T. Schwartz, Linear operators, Part III:Specral operators, Wiley, New York, 1971.
- P. Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), 213-313. https://doi.org/10.1007/BF02392260
- J. Eschmeier and B. Prunaru, Invariant subspaces and localizable spectrum, Integral Equations Operator Theory 55 (2002), 461-471.
- J. Eschmeier and M. Putinar, Bishop's property (β) and rich extensions of linear operators, Indiana Univ. Math. J. 37 (1988), 325-348. https://doi.org/10.1512/iumj.1988.37.37016
- K. Eungil, k-quasihyponormal operators are subscalar, Integral Equations Operator Theory 28 (1997), 492-499. https://doi.org/10.1007/BF01309158
- J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
- K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483-497. https://doi.org/10.21136/CMJ.1993.128413
- K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
- T.L. Miller and V.G. Miller, and M.M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2004), 1483-1493. https://doi.org/10.1090/S0002-9939-03-07217-4
- M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
- C.J. Read, A short proof concerning the invariant subspace problem, J. London Math. Soc. 34 (1986), 335-348. https://doi.org/10.1112/jlms/s2-34.2.335
- C.J. Read, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. 56 (1997), 595-606. https://doi.org/10.1112/S0024610797005486
- Q. Zeng and H. Zhong, Common properties of bounded linear operators AC and BA, J. Math. Anal. 414 (2014), 553-560. https://doi.org/10.1016/j.jmaa.2014.01.021