DOI QR코드

DOI QR Code

LOCAL SPECTRAL THEORY II

  • Received : 2020.12.22
  • Accepted : 2021.01.29
  • Published : 2021.05.30

Abstract

In this paper we show that if A ∈ L(X) and B ∈ L(Y), X and Y complex Banach spaces, then A ⊕ B ∈ L(X ⊕ Y) is subscalar if and only if both A and B are subscalar. We also prove that if A, Q ∈ L(X) satisfies AQ = QA and Qp = 0 for some nonnegative integer p, then A has property (C) (resp. property (𝛽)) if and only if so does A + Q (resp. property (𝛽)). Finally, we show that A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA and BA ∈ L(X) is subscalar with property (𝛿) then both Lat(BA) and Lat(AC) are non-trivial.

Keywords

References

  1. E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators In:Advances in invariant subspaces and other results of Operator Theory:Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
  2. I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  3. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
  4. N. Dunford and J.T. Schwartz, Linear operators, Part I, Wiley, New York, 1967.
  5. N. Dunford and J.T. Schwartz, Linear operators, Part III:Specral operators, Wiley, New York, 1971.
  6. P. Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), 213-313. https://doi.org/10.1007/BF02392260
  7. J. Eschmeier and B. Prunaru, Invariant subspaces and localizable spectrum, Integral Equations Operator Theory 55 (2002), 461-471.
  8. J. Eschmeier and M. Putinar, Bishop's property (β) and rich extensions of linear operators, Indiana Univ. Math. J. 37 (1988), 325-348. https://doi.org/10.1512/iumj.1988.37.37016
  9. K. Eungil, k-quasihyponormal operators are subscalar, Integral Equations Operator Theory 28 (1997), 492-499. https://doi.org/10.1007/BF01309158
  10. J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
  11. K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483-497. https://doi.org/10.21136/CMJ.1993.128413
  12. K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
  13. T.L. Miller and V.G. Miller, and M.M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2004), 1483-1493. https://doi.org/10.1090/S0002-9939-03-07217-4
  14. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
  15. C.J. Read, A short proof concerning the invariant subspace problem, J. London Math. Soc. 34 (1986), 335-348. https://doi.org/10.1112/jlms/s2-34.2.335
  16. C.J. Read, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. 56 (1997), 595-606. https://doi.org/10.1112/S0024610797005486
  17. Q. Zeng and H. Zhong, Common properties of bounded linear operators AC and BA, J. Math. Anal. 414 (2014), 553-560. https://doi.org/10.1016/j.jmaa.2014.01.021