• 제목/요약/키워드: interval-valued Choquet integrals

검색결과 36건 처리시간 0.028초

THE APPLICATION OF INTERVAL-VALUED CHOQUET INTEGRALS IN MULTI CRITERIA DECISION AID

  • Jang, Lee-Chae
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.549-556
    • /
    • 2006
  • In this paper, we consider interval-valued Choquet integrals and fuzzy measures. Using these properties, we discuss some applications of them in multicriteria decision aid. In particular, we show how these interval-valued Choquet integrals can model behavioral analysis of aggregation in ulticriteria decision aid.

AXIOMATIC CHARACTERIZATIONS OF SIGNED INTERVAL-VALUED CHOQUET INTEGRALS

  • Jang, Lee-Chae
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.489-503
    • /
    • 2007
  • In this paper, we define signed interval-valued Choquet integrals which have numerous applications in mathematical economics, informatiom theory, expected utility theory, and risk analysis on interval-valued random variables, for examples: interval-valued random payments and interval-valued random profiles, etc. And we discuss axiomatic characterizations of them. Furthermore, we fine some condition that comonotonic additivity of symmetric Choquet integrals on interval-valued random payments is satisfied and give two examples related the main theorem.

확률집합의 구간치 용적 범함수에 관한 연구 (A note on interval-valued functionals of random sets.)

  • 장이채;김태균
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.131-132
    • /
    • 2008
  • In this paper, we consider interval probability as a unifying concept for uncertainty and Choquet integrals with resect to a capacity functional. By using interval probability, we will define an interval-valued capacity functional and Choquet integrals with respect to an interval-valued capacity functional. Furthermore, we investigate Choquet Choquet weak convergence of interval-valued capacity functionals of random sets.

  • PDF

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

부호가 있는 구간치 쇼케이 적분 (Signed interval-valued Choquet integrals)

  • Jang, Lee-Chae;Kim, Tae-Kyun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.331-334
    • /
    • 2004
  • 본 논문에서, 우리는 부호가 있는 구간치 쇼케이적분을 정의하고 부호가 있는 수간치 쇼케이 적분이 이산과 단조성이 없는 경우를 모델화할 수 있는가를 보인다. 더욱이 일시적인 선택, 재화 가격과 복지평가 등의 응용에 관해서도 언급하고자한다.

  • PDF

On fuzzy preinvex mappings associated with interval-valued Choquet integrals

  • Lee, Chae-Jang;Kim, Hyun-Mee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.127-128
    • /
    • 2008
  • In this paper, we consider define fuzzy invex sets and fuzzy preinvex functions on the class of Choquet integrable functions, and interval-valued fuzzy invex sets and interval-valued fuzzy preinvex functions on the class of interval-valued Choquet integrals. And also we prove some properties of them.

  • PDF

단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구 (On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function.)

  • 장이채;김태균
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.195-198
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval-valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

  • PDF

단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구 (On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function)

  • 장이채;김태균
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

구간치 쇼케이적분과 위험률 가격 측정에서의 응용 (Interval-valued Choquet Integrals and applications in pricing risks)

  • 장이채
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.209-212
    • /
    • 2007
  • Non-additive measures and their corresponding Choquet integrals are very useful tools which are used in both insurance and financial markets. In both markets, it is important to to update prices to account for additional information. The update price is represented by the Choquet integral with respect to the conditioned non-additive measure. In this paper, we consider a price functional H on interval-valued risks defined by interval-valued Choquet integral with respect to a non-additive measure. In particular, we prove that if an interval-valued pricing functional H satisfies the properties of monotonicity, comonotonic additivity, and continuity, then there exists an two non-additive measures ${\mu}_1,\;{\mu}_2$ such that it is represented by interval-valued choquet integral on interval-valued risks.

  • PDF