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Abstract

In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval-
valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore,
we discuss the equivalence among the Lebesgue’s theorems, the monotone convergence theorems of interval-valued
fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone
convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.
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1. Introduction

We consider both interval-valued Choquet integral
[1,236] and interval-valued fuzzy integral [5] with re-
spect to a monotone set function. Set-valued Choquet
integrals was introduced by Jang and Kwon([1]) and re-
studied by Zhang, Guo and Lia([6]) and that the theory
about set-valued integrals has drawn much attention due
to numerous applications in mathematics, economics,
theory of control and many other fields. Set-valued fuz-
zy integral was first defined by D. Zhang and Z
Wangl4]. we note that Lebesgue’s theorems asserts that
almost everywhere convergence implies convergence in
measure on a measurable set of finite measure,

In this paper, we consider Lebesgue-type theorems for
interval-valued functions in non-additive measure theory
and then investigate interval-valued Choquet integrals
and interval-valued fuzzy integral with respect to a ad-
ditive monotone set function. Furthermore, we discuss
the equivalence among the Lebesgue’s theorems, the
monotone convergence theorems of interval-valued fuzzy
integral with respect to a monotone set function and
find some sufficient condition that the monotone con-
vergence theorem of interval-valued Choquet integrals
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monotone set functions, interval-valued functions, Choquet integrals, fuzzy integrals, Lebesgue's

with respect to a monotone set function holds.

2. Preliminaries

Let xbe a set, (X,Q a measurable space and F the
class of all finite non—negative measurable functions on

X A set function pQ>R*=[(,+oo0) is said to be
monotone  if  n(A)<u(B), Whenever 4 BeQ and

Acp null-additive if y(A4(JF)=u(A) for any g0
whenever peQ and p(f)=(); continuous from below if

lim u(A ,)=u(A) whenever (4 1cQ and 4, /4 con-
00
tinuous from above if  Jimu(A J=u(A4) whenever
700
{A )@ A Aand p(A4 )(oo ; strongly order con-
tinuous if  jim u(A =0 whenever (A ANB and
70

u(B)=(y pseudo-order continuous if lim u(A =0 when-
900

ever A€Q, {A4,JCQ ANB and WA —B) =u(A)- We
note that if y is both continuous from below and con-
tinuous from above, then it is continuous. In this paper,
we always assume that p is a monotone set function

with () =0-

Definition 2.1 Let f€F and {f,}< F. (7 }is said to
converge to f almost everywhere (resp. pseudo—almost
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everywhere) on 4 if there is a subset g4 such that
w(E)=0 (resp. p(A4— E)=n(4)) and £, converges to £
on A-F

Definition 2.2 Let fEF and {f,}C F. {f)is said to

converge to fin measure p(resp. pseudo-in measure w
on Aif for any ¢y,

limp({z : If, () = f(z)| = e}nA) =0

n—0

(resp. Lingou({% If 2(2) — A0)I<EINA) =1(A)).

Definition 2.3 ([3]) (1) The Choquet integral of a
measurable function # with respect to a monotone set
function y on peQ is defined by

(© [, = [ n(af0> AN Adr

where the integrand on the right-hand side is an ordi-
nary one.

(2) A measurable function #is called integrable if
the Choquet integral of #can be defined and its value is
finite.

Definition 2.4 ([7]) The fuzzy integral of a measurable
function f with respect to a monotone set function u on
A is defined by

(F) [ ft = sup e, o [a/ABCAN (/) >0)]

Theorem 2.5 ([4]) The following are equivalent.

(1) p is continuous from below;

(@) for any AeQ, fEF, {f,}C F, f,—f pseudo-al-
most everywhere on 4 imply ff pseudo-in measure
on As;

@) for any AeQ, fEF, {f,}C F, £,/ pseudo-al-
most everywhere on 4 imply

lim (3 [, £,d=(O [ s

(4) for any AeQ, fEF, {f.}c F, £,/ f pseudo-al-
most everywhere on 4 imply

lim (9) [, £,di=(9) [ sy

Theorem 2.6 ([4]) The following are equivalent.

(1) p is null-additive and continuous from below;

(2) for any peQ, fEF, {f.}€F, f,—f almost ev-
erywhere on 4 imply f.=f in measure on A

Q) for any AeQ, fEF, {f,}EF, f,/f almost ev-
erywhere on 4 imply
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lim () [, f,dn=(O) [, sats

(4) for any AeQ, fEF, {f,}EF, f,/f almost ev-
erywhere on 4 imply

lim (5) [, 7,d0=(S) [ sy

3. Convergence of sequences of
interval-valued functions

We denote gpt) by
IR ={a= la,a'lla” < a0 ,0atERT).
acR", we define

For any Obviously,

aslR™)

a=lad

Definition 3.1 If , p=fR"), then we define
O Ao N0 N,

@ aveLa\b,a"\b",

(3) g<pif and only if 4-<p~ and g+<pt,
(4) g pif and only if < pand p

(B) gcpif and only if z-<p~ and ,t<pt.

It is easily to see that if we define
a-b={z - ylzea, y=b}
for "4 beKR") then
a-b=la"-b,a"-b']
and that if g, KR MK R*)—[0, oo is a
Hausdorff metric, then
dy(a, b) =max{la™—b7, [a" —b".

Definition 3.2 ([1,2,3,6]) (1) An interval-valued function
fis said to be measurable if for each open set OCRT,
FHO ={zexif(z)n) = ¢}en.

(2) An interval-valued function _fis said to be finite

if |fll=

We denote IF by the class of all finite measurable in-
terval-valued functions

=0t x> 1R —{¢}
on X

Definition 3.3 Let fEIF and {f,}C 1. {7} is said
to dyyconverge to _falmost everywhere(resp. pseudo-al—
most everywhere) on A if there is a subset gp—4 such
that p(E)=0 Gesp. pWA-E)=w4) and 7 4
—-converges to _fon A—F that is,

limd,(f (z), f(z)) =0,

n—>00 n

for all yeq—- g
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Definition 8.4 Let f€1F and {f,}C IF. {7} is said

to dyconverge to _f in measure plresp. pseudo-in
measure ) on A if for any £50s

lii?ou({w : dH(}n(a:)j(m)) = e}ﬂA) =0
(resp.limu({z : dg(F,(z). f(z)) <e

n—>0c0

Definition 3.5 ([3) (1) Let Ae=Q. The Choquet in-
tegral of an interval-valued _fon Als defined by

© [, 7w ={(0 [, sasl i= ()

where () is the family of measurable selections of £
(2) fis said to be sintegrable if
(O f fdu = &.

(3) _f is said to be Choquet integrably bounded if
there is a integrable function g such that

Ifl=,
for all =X

Definition 3.6 ([5]) (1) Let Ac=@. The fuzzy integral
of an interval-valued fon Ais defined by

(® [, F={(9) [, sl =S}
where g_f) is the family of measurable selections of £

(2) fis said to be f-integrable if
(9) [ Fano.

Theorem 3.7 ([6]) If a fuzzy measure y is continuous
and an interval-valued function }:[fj #7] is Choquet

integrably bounded, then
(0 [, () [ fau.

(C / fdu=
Theorem 3.8 (1) If f=[f f*]elf then fis f-in-
tegrable and

(8) [ Tau=15) [ au (5) [ 5l

We denote IF* by the class of all Choquet integrably
bounded interval-valued functions in IF.

Lemma 3.9 Let =1, fler* and
{ fn}z {ifm, £} F*. Assume that y is subadditive.

(1) {—fn} dyconverges to _falmost everywhere (resp.
pseudo-almost everywhere) on 4 if and only if { f;}
converges to f- almost everywhere (resp. pseudo-almost
everywhere) on 4 and { f;} converges to £+ almost ev—
erywhere (resp. pseudo-almost everywhere) on 4

(2) {_fn} d,converges to _fin measure y(resp. pseu-

do-in measure ) on A if and only if {fn} converges to

f~ in measure p(resp. pseudo-in measure w on A and
{ f;} converges to £t in measure p(resp. pseudo-in
measure | on A i B

Proof. (1) (=) If { /. dgrconverges to £ almost ev-
erywhere, then there is a measurable set pc A such
that p(g)=( and

dy(f(2), )=
for all yeA—f Thus,

limlf, (2)

N=->00

—f (z)I=0
and

- =z)=0

for all yeA-— [ that is, { f;} converges to £~ almost

limlf, (z)

n->00

everywhere on Aand { f;} converges to f+ almost ev-
erywhere on 4

(&) If { f;} converges to 7~ almost everywhere on
A and { fﬂ;} converges to f* almost everywhere on A
then there are measurable sets E,, E;CA such that

W(E)=0 and p(F,)=0

lim!f, (z) =f (z)1=0
for all yep—f, and
limlf, (z) = f"(z)1=0

for all x=A—Ey If we put E=E|UE» then gis meas-
urable and p( F)=() since y is subadditive. Hence for all
€A-b ~

limdil £,(x), f(2)

= mm{|ﬁ(x)—f(x)|,|f£(x)—f(x)|}

=() ) B

That is, { fn} d,converges to £ almost everywhere
on A We note that the proof of the case of pseudo-al-
most everywhere is similar to the proof of the case of
almost everywhere. Similarly, we can prove the converse
of (1). So, we omit the prove the converse.

2) If {_fn} dy converges to fin measure j on A4
then for all ey,

limp({zldy(F, (@), f(2)) = }n4) =0.

Since o
Al £, £D)
= max{|f; (2) = f@), 1f5 () — f(2) 1},
we have
limp({zldy(f, (), £ (@) = e}n4) =0
and

limp({eldy (£l (@), f7(2)) = e}nA4) =0.

—>00
That is, {5} converges to £ in measure yon Aand
{f5} converges to f* in measure y on 4 We note that

the proof of the case of pseudo-in measure is similar to
the proof of the case of in measure. Similarly, we can
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prove the converse of (2). So, we omit the prove of the
converse.

We discuss the equivalence among the Lebesgue’s
type theorems, the monotone convergence theorems of
interval-valued fuzzy integrals with respect to a mono-
tone set function.

Theorem 3.10 Assume that y is continuous from be-
low and subadditive. The following two statements are
equivalent.

(1) for any AeQ, fEIF* and {f_n}c IF*, {}n} dy
—converge to _fpseudofalmost everywhere on 4 imply
{ }n} d;yconverge to f pseudo-in measure |, on A

(2 for any AeQ, FEIF* and {f_n}c IF*, _fn/?f
pseudo-almost everywhere on Aon A imply

a5=1im() [ F au=(0) [ Fan.
n—00 A, A

Proof. (1)= (2) Assume that (2) holds. By Lemma 3.9,

Theorem 2.5 (2) holds. Thus, by Theorem 2.5,
() [ fru=(0) [ 1 du
N—00 A A

and

lim(C) / Af:{duz (0 f Af*du

n—o0

Thus, we have

lim d((O) [ 7., (O) [ Fab)
= limmex (1O [ fodr—(O) [ fduly
O Frdi—~(O [ F*al)

Thatois, (2) holds.

(2)=(1) Assume that (2) holds. By Lemma 309,
Theorem 2.5(3) holds. By Theorem 2.5, for any A
fEF, {f,}EF, f,—f bseudo-almost everywhere on 4
imply f.=f pseudo-in measure on A For any A=,
feIF* and {f_n}c IF*, {}n} d,converge to # pseu-
do-almost everywhere on A by Lemma 39, it
pseudo—almost everywhere on Aand fif™ pseudo-al-
most everywhere on 4 By Theorem 2.5, Fo—f bseu-
do-in measure on A and f;—f~ bseudo-in measure on
A By Lemma 39, {_fn} dconverge to £ pseudo-in
measure 3 on 4 That is, (1) holds.

By using Definition 3.6, Theorem 3.8, and theé same
method of Theorem 3.10, clearly, we obtain the following
theorem.

Theorem 3.11 Assume that y is null additive and
continuous from below. The following two statements
are equivalent.

(1) for any AeQ, fEIF and {f—n}CIF’ {}n} dy
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TR LA O|HEo i =2 IHEl Moo mEt o3

—-converge to _fpseudo—almost everywhere on 4 imply
{}n} djconverge to fpseudo-in measure ; on 4

(2) for any AcQ. [EIF and {f,}C IF, 7 Fron A
imply
dy=lim(S) [ 7 du=(3) [ Fa

n—oo

Finally, clearly, we have the following theorems for
interval-valued Choquet integrals and interval-valued
fuzzy integrals with respect to a monotone set function.

Theorem 3.11 Let i be continuous. Then the follow-
ing two statements are equivalent.

() For any AcQ, fEF* and {f,}€F*, s sron
A then

i = dy;
im(@) [ f.du=(0) [ sau
(2) For any AeQ, fELF* and {f,}c IF¥, fu/fon
A then
4-1im(0) [ aw=(0) [ Fan.

n—oo

Theorem 3.12 Let ;1 be continuous from below. Then
the following two statements are equivalent.

(1) For any AeQ, fEF and {f,}EF, £, fon A
then

lim(s) /Afndu=(5) /Afdu;

(2) For any AeQ, fEIF and {f_n}c IF, f,/fon
A then
dy=tim(s) [ Fou=(3) [ Fau

n—>co
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