확률집합의 구간치 용적 범함수에 관한 연구

A note on interval-valued functionals of random sets.

장이채 · 김태균 Lee-Chae Jang · Taekyun Kim

Dept. of Mathematics and Computer Science, Konkuk University Division of General Education, Kwangwoon University

Abstract

In this paper, we consider interval probability as a unifying concept for uncertainty and Choquet integrals with resect to a capacity functional. By using interval probability, we will define an interval-valued capacity functional and Choquet integral with respect to an interval-valued capacity functional. Furthermore, we investigate Choquet Choquet weak convergence of interval-valued capacity functionals of random sets.

Key words: random sets, interval probability, interval-valued capacity functional, Choquet integrals, Choquet weak convergence.

1. Interval probabilities and Choquet integrals

Throughout the paper, R is the set of real numbers and

$$I(R) = \{ [a, b] | a, b \in R \text{ and } a \leq b \}.$$

Then a element in I(R) is called an interval number. On the interval number define; for each pair set, we $[a, b], [c, d] \in I(R)$ and $k \in R$,

$$[a,b] + [c,d] = [a+c,b+d]$$

$$[a,b] \cdot [c,d] = [a \cdot c \land a \cdot d \land b \cdot c \land b \cdot d,$$

$$a \cdot c \lor a \cdot d \lor b \cdot c \lor b \cdot d]$$

$$k[a,b] = \begin{cases} [ka, kb], & k \ge 0 \\ [kb, ka], & k < 0 \end{cases}$$

$$[a,b] \le [c,d] \quad \text{if and colvit}$$

 $[a,b] \leq [c,d]$ if and only if

 $a \le c$ and $b \le d$

We note that $(I(R), d_{II})$ is a metric space, where d_H is the Hausdorff metric defined by

$$d_{IJ}(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} |a - b|, \sup_{b \in B} \inf_{a \in A} |a - b| \}$$

for all $A, B \in I(R)$. Then it is easy to see

that for $[a,b],[c,d] \in I(R)$, $d_H([a,b],[c,d]) = \max \{|a-c|,|b-d|\}.$

Let X be a locally, compact, second-countable, Hausdorff (LCSCH) space. Let Φ be the class of all closed sets in X, Ψ the class of all compact sets in X, O the class of all open sets in X, $\Psi_0 = \Psi - \{\emptyset\}$, and B(X) the class of all Borel sets in X. We note that $B(\Phi)$ is the σ -algebra classes generated by Φ^K , $K \in \Psi$ and Φ_G , $G \in O$, where $\Phi^K = \{ F \in \Phi | F \cap K = \emptyset \}$ and $\Phi_G = \{ F \in \Phi | F \cap G = \emptyset \}.$

Definition 2.1 ([6]) Let (Ω, Σ, P) be a and $(\Phi, B(\Phi))$ probability space ameasurable space.

- measurable A mapping (1) $S: (\Omega, \Sigma, P) \rightarrow (\Phi, B(\Phi))$ is called a random closed set.
- (2) The probability measure Q induced on $B(\Phi)$ is defined by for each $B \in B(\Phi), \ Q(B) = P(S^{-1}(B)).$

We note that the distribution of a

random set S is uniquely determined by its hitting functional T_S on Ψ such that

 $T_S(K) = P(\{w | S(w) \cap K \neq \emptyset\}), K \in \Psi.$ From this, it is easy to see that T_S satisfies the following properties(see[5]):

- (T_1) T_S is upper semi-continuous on Ψ , i.e., $K_n \setminus K$ in $\Psi \Rightarrow T_S(K_n) \setminus T_S(K)$;
- (T_2) $T_S(\varnothing) = 0$ and $0 \le T_S \le 1$;
- (T_3) T_S is monotone increasing on Ψ and for $K_1, K_2, \dots, K_n \in \Psi, n \geq 2$,

$$T_S(\cap_{j=1}^n K_j)$$

$$\leq \sum_{\varnothing \neq J \subset \{1,2,\cdots,n\}} (-1)^{|J|+1} T_S(\bigcup_{j \in J} K_j).$$

Definition 2.2 ([6]) An interval-valued set function $\overline{P}(\cdot)$ on Σ is called an interval probability if

(i)
$$P(A) = [L(A), U(A)],$$

 $0 \le L(A) \le U(A) \le 1, \forall A \in \Sigma.$
(ii) $\{A \in \Sigma | L(A) \le P(A) \le U(A)\} \ne \emptyset.$

Definition 2.3 The interval probability measure \overline{Q} induced on $B(\Phi)$ is defined by for each $B(\Phi)$, $\overline{Q}(B) = \overline{P}(S^{-1}(B))$.

Definition 2.4 (1) For every random closed set S, an interval-valued mapping \overline{T}_S is said to be an interval-valued capacity functional if there exist two capacity functionals T_S^1 and T_S^2 such that

$$\overline{T}_{S} = [T_{S}^{1}, T_{S}^{2}].$$

(2) Let $f \in C_b(X)$. The Choquet integral of f with respect to $\overline{T} = [T^1, T^2]$ is defined by

$$(C)\int f d\overline{T} = [(C)\int f dT^{1}, (C)\int f dT^{2}].$$

(3) The sequence of interval-valued capacity functionals \overline{T}_n d_H -converges in the Choquet weak sense to the interval-valued capacity functional \overline{T} in X if

$$(C)\int fd\overline{T}_{n} \rightarrow_{d_{H}} (C)\int fd\overline{T}, \ \forall f\in C_{b}(X)$$

whenever $\overline{T}_n \rightarrow_{C-W} \overline{T}$ as $n \rightarrow \infty$.

Theorem 2.5 Let $\{\overline{T}_n = [T_n^1, T_n^2]\}$ be a sequence of interval-valued capacity functionals and $T = [T^1, T^2]$ an interval-valued capacity functional. Then $\overline{T}_n \rightarrow_{d_H-C-W} \overline{T}$ as $n \rightarrow \infty$ if and only if $T_n^i \rightarrow_{C-W} T^i$ for i = 1, 2 as $n \rightarrow \infty$.

Theorem 2.6 Let $\{\overline{T}_n = [T_n^1, T_n^2]\}$ be a sequence of interval-valued capacity functionals. If $\overline{T}_n \rightarrow_{d_H-C-W} \overline{T}$ as $n \rightarrow \infty$, then we have

$$d_{H}-\limsup_{n\to\infty}\overline{T}_{n}(B)\leq\overline{T}(B),\ \forall\,B\in\Phi.$$

3. References

- [1] G. Choquet, Theory of capacities, Ann. Inst. Fourier, Vol.5, pp.131-295, 1953.
- [2] Ding Feng, Hung T. Nguyen, Choquet weak convergence of capacity functionals of random sets Information Sciences Vol.177, pp. 3239-3250, 2007.
- [3] L. C. Jang, A note on distance measure and similarity measure defined by Choquet integral on interval-valued fuzzy sets, J. of Fuzzy Logic and Intelligence Systems Vol.17(4), pp.455-459, 2007.
- [4] L. C. Jang, Interval-valued Choquet integrals and applications in pricing risks, and J. S. Kwon, J. of Fuzzy Logic and Intelligence Systems Vol.17(4), pp.451-454, 2007.
- [5] Kurt Weichselberger, The theory of interval-probability as a unifying concept for uncertainty, International J. of Approximation Reasioning Vol.24, pp.149-170, 2000.
- [6] T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems Vol.29, pp.201-227, 1989.