단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구

On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function.

장이채·김태균 Lee-Chae Jang·Taekyun Kim

Dept. of Mathematics and Computer Science, Konkuk University EECS, Kyungpook University

Abstract

In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval-valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

Key words: monotone set functions, interval-valued functions, Choquet integrals, fuzzy integrals, Lebesgue's theorems, monotone convergence theorems.

1. Introduction

We consider both interval-valued integral[1,2,3,6] Choquet and interval-valued fuzzy integral [5] with respect to a monotone set function. Set-valued Choquet integrals was introduced by Jang and Kwon([1]) and restudied by Zhang, Guo and Lia([6]) and that the theory about set-valued integrals has drawn much attention due to numerous applications in mathematics, economics, theory of control and many other fields. Set-valued fuzzy integral was first defined by D. Zhang and Z. Wang[4]. we note that Lebesgue's theorems asserts that almost everywhere implies convergence in convergence measure on a measurable set of finite measure.

consider this In paper, we Lebesgue-type for theorems interval-valued functions in non-additive measure theory and then investigate interval-valued Choquet integrals interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the the Lebesgue's equivalence among theorems, the monotone convergence theorems of interval-valued fuzzy integral with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

2. Preliminaries

Let X be a set, (X,Ω) a measurable

space and F the class of all finite non-negative measurable functions on X. A set function $\mu: \Omega \to R^+ = [0, +\infty)$ is said to be monotone if $\mu(A) \leq \mu(B)$, $A,B \in \Omega$ and $A \subset B$: whenever null-additive if $\mu(A \cup F) = \mu(A)$ for any $A \in \Omega$ whenever $F \in \Omega$ and $\mu(F) = 0$; from below continuous $\lim_{n\to\infty}\mu\left(A_n\right)=\mu\left(A\right)\quad\text{whenever}\quad\left\{A_n\right\}\subset\Omega\quad\text{and}\quad$ $A_n \nearrow A$; continuous from above if $\lim_{n\to\infty}\mu\left(A_n\right)=\mu\left(A\right)\qquad\text{whenever}\qquad \{A_n\}\subset\Omega,$ $A_n \setminus A$ and $\mu(A_1) < \infty$; strongly order continuous if $\lim_{n\to\infty}\mu\left(A_n\right)=0\quad\text{whenever}$ $\{A_n\}\subset \Omega, \qquad A_n \setminus B \qquad \text{and} \qquad \mu(B)=0;$ pseudo-order continuous if $\lim_{n\to\infty} \mu(A_n) = 0$ whenever $A \in \Omega$, $\{A_n\} \subset \Omega$, $A_n \setminus B$ and $\mu(A-B) = \mu(A)$. We note that if μ is both continuous from below and continuous from above, then it is continuous. In this paper, we always assume that μ is a monotone set function with $\mu(\emptyset) = 0$.

Definition 2.1 Let $f \in \mathbb{F}$ and $\{f_n\} \subset \mathbb{F}$. $\{f_n\}$ is said to converge to f almost everywhere (resp. pseudo-almost everywhere) on A if there is a subset $E \subset A$ such that $\mu(E) = 0$ (resp. $\mu(A-E) = \mu(A)$) and f_n converges to f on A-E.

Definition 2.2 Let $f \in \mathbb{F}$ and $\{f_n\} \subset \mathbb{F}$. $\{f_n\}$ is said to converge to f in measure μ (resp. pseudo-in measure μ) on A if for any $\epsilon > 0$,

$$\begin{split} \lim_{n\to\infty} &\mu(\left\{x:|f_n(x)-f(x)|\geq \epsilon\right\}\cap A)=0\\ (\text{resp.} &\lim_{n\to\infty} &\mu(\left\{x:|f_n(x)-f(x)|<\epsilon\right\}\cap A)=\mu(A)). \end{split}$$

Definition 2.3 ([3]) (1) The Choquet integral of a measurable function f with respect to a monotone set function μ on $A \in \Omega$ is defined by

$$(C)\int_{A}fd\mu=\int_{0}^{\infty}\mu(\{x|f(x)>r\}\cap A)dr$$

where the integrand on the right-hand side is an ordinary one.

(2) A measurable function f is called c -integrable if the Choquet integral of f can be defined and its value is finite.

Definition 2.4 ([7]) The fuzzy integral of a measurable function f with respect to a monotone set function μ on $A \in \Omega$ is defined by

$$(F) \int_{A} f d\mu$$

$$= \sup_{\alpha \in [0,\infty)} \left[\alpha \wedge (A \cap \{x | f(x) > \alpha\}) \right].$$

3. Convergence of integral sequence

We denote $I(R^+)$ by $I(R^+) = \{\overline{a} = [a^-, a^+] | a^- \le a^+, a^-, a^+ \in R^+\}.$ For any $a \in R^+$, we define a = [a, a]. Obviously, $a \in I(R^+)$.

Definition 3.1 If $\bar{a}, \bar{b} \in I(R^+)$, then we define

- $(1) \ \overline{a} \wedge \overline{b} = [a^- \wedge b^-, a^+ \wedge b^+],$
- (2) $\bar{a} \vee \bar{b} = [a^- \vee b^-, a^+ \vee b^+],$
- (3) $\bar{a} \leq \bar{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$,
- (4) $\bar{a} < \bar{b}$ if and only if $\bar{a} \le \bar{b}$ and $\bar{a} \ne \bar{b}$,
- (5) $\bar{a} \subset \bar{b}$ if and only if $b^- \leq a^-$ and $a^+ \leq b^+$.

It is easily to see that if we define

$$\overline{a} \cdot \overline{b} = \{ x \cdot y | x \in \overline{a}, y \in \overline{b} \}$$

for \bar{a} , $\bar{b} \in I(R^+)$, then

$$\bar{a}\cdot\bar{b}=[a^-\cdot b^-,a^+\cdot b^+]$$

and that if $d_H: I(R^+) \times I(R^+) \rightarrow [0, \infty)$ is a Hausdorff metric, then

$$d_H(\bar{a}, \bar{b}) = \max\{|a^- - b^-|, |a^+ - b^+|\}.$$

Definition 3.2 ([1,2,3,6]) (1) An interval-valued function \bar{f} is said to be measurable if for each open set $O \subset R^+$,

$$ar{f}^{-1}(O) = \{x \in X | ar{f}(x) \cap O \neq \emptyset \} \in \Omega.$$
(2) An interval-valued function $ar{f}$ is said to be finite if $\| \bar{f} \| = \sup_{r \in \overline{f}(x)} |r| < \infty$

We denote \mathbb{F} by the class of all finite measurable interval-valued functions $\tilde{f} = [f^-, f^+] : X \rightarrow I(R^+) \setminus \{\emptyset\}$ on X.

Definition 3.3 Let $\bar{f} \in \mathbb{F}$ and $\{\bar{f}_n\} \subset \mathbb{F}$. $\{\bar{f}_n\}$ is said to d_H -converge to \bar{f} almost everywhere (resp. pseudo-almost everywhere) on A if there is a subset $E \subset A$ such that $\mu(E) = 0$ (resp. $\mu(A - E) = \mu(A)$) and \bar{f}_n d_H -converges to \bar{f} on A - E, that is,

$$\lim_{n\to\infty}d_H(\overline{f_n}(x),\overline{f}(x))=0, \text{ for all } x\in A-E.$$

Definition 3.4 Let $\bar{f} \in \mathbb{F}$ and $\{\bar{f}_n\} \subset \mathbb{F}$. $\{\bar{f}_n\}$ is said to d_H -converge to \bar{f} in measure μ (resp. pseudo-in measure μ) on A if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mu(\left\{x:d_H(\overline{f_n}(x),\overline{f}(x))\geq\epsilon\right\}\cap A)=0$$

(resp.

$$\lim_{n\to\infty}\mu(\left\{x:d_H(\overline{f_n}(x),\overline{f}(x))<\epsilon\right\}\cap A)=\mu(A)).$$

Definition 3.5 ([3]) (1) Let $A \in \Omega$. The Choquet integral of an interval-valued \overline{f} on A is defined by

$$(C)\int_{A} \overline{f} d\mu = \{(C)\int_{A} f d\mu | f \in S(\overline{f})\}$$

where $S(\overline{f})$ is the family of measurable selections of \overline{f} .

(2) \bar{f} is said to be c-integrable if

$$(C)\int \bar{f}d\mu \neq \emptyset.$$

(3) \bar{f} is said to be Choquet integrably bounded if there is a c-integrable function g such that

$$\|\bar{f}\| = \sup_{r \in \bar{f}(x)} |r| \leq g(x),$$

for all $x \in X$.

Theorem 3.6 ([6]) If a fuzzy measure μ is continuous and an interval-valued function $\bar{f} = [f^-, f^+]$ is Choquet integrably bounded, then

$$(C)\int \overline{f}d\mu = [(C)\int f^{-}d\mu,(C)\int f^{+}d\mu].$$

We denote IF* by the class of all Choquet integrably bounded interval-valued functions in IF.

Lemma 3.7 Let $\bar{f} = [f^-, f^+] \in \mathbb{F}$ and $\{\bar{f}_n\} = \{[f_n^-, f_n^+]\} \subset \mathbb{F}$.

- (1) $\{\bar{f}_n\}$ d_H -converge to \bar{f} everywhere (resp. pseudo-almost everywhere) on A if and only if $\{f_n^-\}$ is said converge almost to to everywhere (resp. pseudo-almost everywhere) on A and $\{f_n^+\}$ is said to converge to f^+ almost everywhere (resp. pseudo-almost everywhere) on A.
- (2) $\{\bar{f}_n\}$ is said to d_H -converge to \bar{f} in measure μ (resp. pseudo-in measure μ) on A if and only if $\{f_n^-\}$ is said to converge to f^- in measure μ (resp. pseudo-in measure μ) on A and $\{f_n^+\}$ is said to converge to f^+ in measure μ (resp. pseudo-in measure μ) on A.

we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function.

Theorem 3.8 The following three statements are equivalent.

- (1) μ is continuous from below;
- (2) for any $A \in \Omega$, $\bar{f} \in \mathbb{F}$ and $\{\bar{f}_n\} \subset \mathbb{F}$, $\{\bar{f}_n\}$ d_H -converge to \bar{f} pseudo-almost everywhere on A imply $\{\bar{f}_n\}$ d_H -converge to \bar{f} pseudo-in measure μ on A;

Proceedings of KFIS Autumn Conference 2007 Vol. 17, No. 2.

(3) for any
$$A \in \Omega$$
, $\overline{f} \in \mathbb{F}$ and $\{\overline{f}_n\} \subset \mathbb{F}$, $\overline{f}_n \nearrow \overline{f}$ on A imply
$$d_H - \lim_{n \to \infty} (S) \int_A \overline{f}_n d\mu = (S) \int_A \overline{f} d\mu.$$

Theorem 3.9 The following three statements are equivalent.

- (1) μ is null additive and continuous from below;
- (2) for any $A \in \Omega$, $\bar{f} \in \mathbb{F}$ and $\{\bar{f}_n\} \subset \mathbb{F}$, $\{\bar{f}_n\}$ d_H -converge to \bar{f} pseudo-almost everywhere on A imply $\{\bar{f}_n\}$ d_H -converge to \bar{f} pseudo-in measure μ on A;
- (3) for any $A \in \Omega$, $\overline{f} \in \mathbb{F}$ and $\{\overline{f}_n\} \subset \mathbb{F}$, $\overline{f}_n \nearrow \overline{f}$ on A imply $d_H \lim_{n \to \infty} (S) \int_A \overline{f}_n d\mu = (S) \int_A \overline{f} d\mu.$

Now, we find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

Theorem 3.10 If μ is continuous and for any $A \in \Omega$, $\overline{f} \in \mathbb{F}^*$ and $\{\overline{f}_n\} \subset \mathbb{F}^*$, $\overline{f_n} \nearrow \overline{f}$ on A, then

$$d_{H}-\lim_{n\to\infty}(C)\int_{A}\overline{f_{n}}\,d\mu=(C)\int_{A}\overline{f}\,d\mu.$$

Finally, we obtain some properties of interval-valued Choquet integrals and interval-valued fuzzy integrals with respect to a monotone set function.

Theorem 3.11 Let μ be continuous. Then the following two statements are equivalent.

- (1) For any $A \in \Omega$, $f \in \mathbb{F}^*$ and $\{f_n\} \subset \mathbb{F}^*$, $f_n \nearrow f$ on A, then $\lim_{n \to \infty} (C) \int_A f_n d\mu = (C) \int_A f d\mu;$
- (2) For any $A \in \Omega$, $\overline{f} \in \mathbb{F}^*$ and $\{\overline{f}_n\} \subset \mathbb{F}^*$, $\overline{f}_n \nearrow \overline{f}$ on A, then

$$d_{H} - \lim_{n \to \infty} (C) \int_{A} \overline{f_{n}} d\mu = (C) \int_{A} \overline{f} d\mu.$$

Theorem 3.12 Let μ be continuous from below. Then the following two statements are equivalent.

(1) For any $A \in \Omega$, $f \in \mathbb{F}$ and $\{f_n\} \subset \mathbb{F}$, $f_n \nearrow f$ on A, then

$$\lim_{n\to\infty}(S)\int_A f_n d\mu = (S)\int_A f d\mu;$$

(2) For any $A \in \Omega$, $\overline{f} \in \mathbb{F}$ and $\{\overline{f}_n\} \subset \mathbb{F}$, $\overline{f}_n \nearrow \overline{f}$ on A, then $d_H - \lim_{n \to \infty} (S) \int_{-1}^{\infty} \overline{f}_n d\mu = (S) \int_{-1}^{\infty} \overline{f}_n d\mu.$

4. References

- [1] L.C. Jang and J.S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems Vol.112 pp.233-239, 2000.
- [2] L.C. Jang, Some characterizations of interval-valued Choquet price functionals, J. of Korea Fuzzy Logic and Intelligent Systems Society Vol.16, No.2, pp.247-251, 2006.
- [3] L.C. Jang, A note on the monotone interval-valued set function defined by interval-valued Choquet integral, Commun. Korean Math. Soc. Vol.22, No.2, pp.227-234, 2007.
- [4] Jinjie Song and Jun Li, Lebesgue theorems in non-additive measure theory, Fuzzy Sets and Systems Vol.149, pp.543-548, 2005.
- [5] Deli Zhang and Zixiao Wang, Fuzzy integrals of fuzzy-valued functions, Fuzzy Sets and Systems Vol.54, pp.63-67, 1993.
- [6] D. Zhang, C.Guo and D. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets and Systems Vol.147, pp.475-485, 2004.
- [7] Z. Wang and G.J. Klir, Fuzzy measure theory, Plenum Press, New York, 1992.