• 제목/요약/키워드: high density plasma

검색결과 901건 처리시간 0.032초

유도결합형 제논의 가스압력 및 RF전력에 따른 플라즈마의 전기적 특성 (Electrical Properties of Plasma According to Gas Pressure and RF Power of Xe-Inductively Coupled Plasma)

  • 최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.43-47
    • /
    • 2006
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma (ICP). As results at several dependences of 20~100mTorr Xenon pressure, the brightness of discharge tube was higher (4,900 $cd/m^2$) than other conditions when Xe pressure was 20mTorr and RF power was 200W. In that case, the electron temperature and density were 3.58eV and $3.56{\times}10^{12}cm^2$, respectively. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조 (Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition)

  • 이승훈;남경희;홍승찬;이정중
    • 한국표면공학회지
    • /
    • 제38권2호
    • /
    • pp.60-64
    • /
    • 2005
  • The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

펄스 모듈레이션된 고주파 플라즈마의 시변 특성 (Time variation characteristic of pulse-modulated high frequency plasma)

  • 이선홍;이대성;조용성;김동현;이호준;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1817-1819
    • /
    • 2004
  • From the plasma application point of view, electron temperature and density are one of the most important parameters for plasma process. But it is only available to control plasma by adjusting external factors like gas pressure and input power. In this paper, pulse-modulated plasma is generated by modulating 13.56GHz RF power with 1, 5, 10kHz pulse. And Langmuir probe technique is used to study the distribution of electron temperature and density. When modulated pulse is off, electron temperature decreases gradually in form of exponential decay. The value t of exponential decay slope is 33.619, 13.834, 10.803 in 1kHz. 5kHz. 10kHz. This implies that this method can be used to control electron temperature and density.

  • PDF

Plasma for Semiconductor Processing

  • Efremov, Alexandre
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.1-6
    • /
    • 2002
  • Plasma processing of semiconductor materials plays a dominant role in microelectronic technology. During last century, plasma have gone a way from laboratory phenomena to industrial applications due to intensive progress in both scientific and industrial trends. Improvement and development of new experience together with development of plasma theory and plasma diagnostics methods. A most parameters (pressure, flow rate, power density) and various levels of plasma system (energy distribution, volume gas chemistry, transport, heterogeneous effects) to understand the whole process mechanism. It will allow us to choose a correct ways for processes optimization.

  • PDF

Measurement of Electron Temperature and Plasma Density in Coplanar AC Plasma Display Panels.

  • Cho, Il-Ryong;Moon, Min-Yook;Ryu, Chung-Gon;Choi, Myung-Chul;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.748-751
    • /
    • 2003
  • The electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDPs) have been experimentally investigated by a micro Langmuir probe and the high speed discharge images in this experiment.

  • PDF

고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 광학적 및 전기적 특성 (Optical and Electrical Characteristics of Fluorocarbon Films Deposited in a High-Density C4F8 Plasma)

  • 권혁규;유상현;김준현;김창구
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.254-259
    • /
    • 2021
  • 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 광학적 및 전기적 특성을 소스파워와 압력을 변화하며 분석하였다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 F/C 비율은 2단계 증착 메커니즘의 작용으로 소스파워가 증가할수록 증가하였고 압력이 증가할수록 감소하였다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 F/C 비율 변화는 불화탄소막의 광학적 및 전기적 특성 변화에 직접적으로 영향을 끼쳤다. 즉, 불화탄소막의 굴절률은 F/C 비율 변화 양상과는 달리 소스파워가 증가할수록 감소하였고 압력이 증가할수록 증가하였는데 이는 F/C 비율이 증가할수록 전자분극작용이 억제되고 불화탄소막의 망상조직이 약화되어 굴절률이 감소하기 때문이었다. 불화탄소막의 비저항은 F/C 비율 변화와 같이 소스파워가 증가할수록 증가하였고 압력이 증가할수록 감소하였는데 이는 F/C 비율이 증가할수록 주변 전자들을 반발하려는 경향이 강해져서 비저항이 증가하기 때문이었다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 F/C 비율 조절로 불화탄소막의 광학적 및 전기적 특성을 직접적으로 변화할 수 있으므로 불화탄소막이 반도체소자제조공정에서 저 유전상수 물질 대체용으로 가능할 수 있음이 예상된다.

A Formation of the $Fluorocarbonated-SiO_2$ Films on Si(100) ASubstrate by $O_2/FTES-High$ Density Plasma CVD

  • Oh, Kyoung-Suk;Kang, Min-Sung;Lee, Kwang-Man;Kim, Duk-Soo;Kim, Doo-Chul;Choi, Chi-Kyu;Yun, Seak-Min;Chang, Hong-Young
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.106-117
    • /
    • 1998
  • Fluorocarbonated-SiO2 films were deposited on p-type Si(100) substrate using FSi$(OC_2H_5)_3$ (FTES), and $O_2$ mixture gases by a helicon plasms source. High density $O_2$/FTES/Ar plasma of ~$10^{12} \textrm{cm}^{-3}$ is obtained at low pressure (<3mTorr) with RF power above 900 W in the helicon plasma source. Optical emission spectroscopy (OES) is used to study the relation between the relative densities of the radicals and the film properties. The FTES and $O_2$ gases are greatly dissociated at the helicon mode that is launched at the above threshold plasma density. FTIR and XPS spectra shows that the film has Si-F, and C-F bonds during the formation process of the film which may lower the dielectric constant greatly. The relative dielectric constant, leakage current density, and dielectric breakdown voltage are about 2.8, $8\times10^{-9}\textrm{A/cm}^2$, and > 12 MV/cm, respectively.

  • PDF

선형 유도결합 플라즈마 시스템에서 자장에 의한 플라즈마의 Confinement 효과에 관한 연구 (Development of Plasma Confinement by Applying Multi-Polar Magnetic Fields in an Internal Inductively Coupled Plasma System)

  • 임종혁;김경남;염근영
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.142-146
    • /
    • 2006
  • A novel internal-type linear inductive antenna, which we refer to as a double comb-type antenna, was developed for a large-area plasma source with substrate size of $880\;mm{\times}660\;mm$ ($4^{th}$ generation glass size). In this study, effect of plasma confinement by applying multi-polar magnetic field was investigated. High density plasmas of the order of $3.18{\times}10^{11}\;cm^{-3}$ could be obtained with a pressure of 15 mTorr Ar at an inductive power of 5000 W with good plasma stability. This plasma density is higher than that obtained for the conventional double comb-type antenna, possibly due to the plasma confinement, low rf voltage, resulting in high power transfer efficiency. Also, due to the remarkable reduction in the antenna rf voltage and length, a plasma uniformity of less than 3% could be obtained within a substrate area of $880\;mm{\times}660\;mm$ as rf power increased.

고밀도 플라즈마에서 규소산화막을 마스크로 이용한 백금박막의 페터닝 (Patterning of Pt thin films using SiO$_2$mask in a high density plasma)

  • 이희섭;이종근;박세근;정양희
    • 전자공학회논문지D
    • /
    • 제34D권3호
    • /
    • pp.87-92
    • /
    • 1997
  • Inductively coupled Cl$_{2}$ plasma has been studied to etch Pt thin films, which hardly form volatile compound with any reactive gas at normal process temperature. Low etch rate and residue problems are frequently observed. For higher etch rate, high density plasma and higher process temperature is adopted observed. For higher etch rate, high density plasma and higher process temperature is adopted and thus SiO$_{2}$ is used as for patterning mask instead of photoresist. The effect of O$_{2}$ or Ar addition to Cl$_{2}$ was investigated, and the chamber pressure, gas flow rate, surce RF power and bias RF power are also varied to check their effects on etch rate and selectivity. The major etching mechanism is the physical sputtering, but the ion assisted chemical raction is also found to be a big factor. The proposs can be optimized to obtain the etch rate of Pt up to 200nm/min and selectivity to SiO$_{2}$ at 2.0 or more. Patterning of submicron Pt lines are successfully demonstrated.

  • PDF

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF