Development of Plasma Confinement by Applying Multi-Polar Magnetic Fields in an Internal Inductively Coupled Plasma System

선형 유도결합 플라즈마 시스템에서 자장에 의한 플라즈마의 Confinement 효과에 관한 연구

  • Lim, Jong-Hyeuk (Department of Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Kyong-Nam (Department of Materials Science and Engineering, Sungkyunkwan University) ;
  • Yeom, Geun-Young (Department of Materials Science and Engineering, Sungkyunkwan University)
  • 임종혁 (신소재공학과, 성균관대학교) ;
  • 김경남 (신소재공학과, 성균관대학교) ;
  • 염근영 (신소재공학과, 성균관대학교)
  • Published : 2006.06.30

Abstract

A novel internal-type linear inductive antenna, which we refer to as a double comb-type antenna, was developed for a large-area plasma source with substrate size of $880\;mm{\times}660\;mm$ ($4^{th}$ generation glass size). In this study, effect of plasma confinement by applying multi-polar magnetic field was investigated. High density plasmas of the order of $3.18{\times}10^{11}\;cm^{-3}$ could be obtained with a pressure of 15 mTorr Ar at an inductive power of 5000 W with good plasma stability. This plasma density is higher than that obtained for the conventional double comb-type antenna, possibly due to the plasma confinement, low rf voltage, resulting in high power transfer efficiency. Also, due to the remarkable reduction in the antenna rf voltage and length, a plasma uniformity of less than 3% could be obtained within a substrate area of $880\;mm{\times}660\;mm$ as rf power increased.

Keywords

References

  1. Y. Sctuhara, T. Shoji, A. Ebe, S. Baba, N. Yamamoto, K. Takahashi, K. Ono, S. Miyake, Surface and Coating Technology, 174-175 (2003) 33-39 https://doi.org/10.1016/S0257-8972(03)00523-1
  2. J. Holland, M. Barnes, A. Demos, T. Ni, P, Shufflebotham, W. Yao, SID Sym. Digest, 27 (1996) 526
  3. F. Heinrich, U. Banzlger, A . Jentzsch, G. Neumann, C. Huth, J. Vac. Sci. Technol., B 14 (1996) 2000 https://doi.org/10.1116/1.588973
  4. H. Takei. H. Kawamura, Y. Ohta, R. Gardner, SID 98 Digest, 1102 (1998)
  5. J. Schmitt, M. Elyaakoubi, L. Sansonnens, Plasma Sources Sci. Technol., 11 (2002) A206 https://doi.org/10.1088/0963-0252/11/3A/331
  6. R. B. Piejak, V. A. Gody, B. M. Alexandrovich. Plasma Sources Sci. Technol., 1 (1992) 179 https://doi.org/10.1088/0963-0252/1/3/006
  7. Z. Yu, D. Shaw, P. Gonzales, G. J. Collins, J. Vac. Sci. Technol., A 13 (1995) 503 https://doi.org/10.1116/1.579774
  8. J. H. Kim, H. J. Lee, Y. T. Kim, J. H. Joo, K. W. Whang, J. Vac. Sci. Technol., A 15 (1997) 564 https://doi.org/10.1116/1.580684
  9. T. Meziani, P. Colpo, F. Rossi, Plasma Sources Sci Technol., 10 (2001) 276 https://doi.org/10.1088/0963-0252/10/2/317
  10. K. N. Leung, G. R. Taylor, J. M. Barrie. S. L. Paul, R. E. Kribel, Physics Lett., 57A (1976) 145