• Title/Summary/Keyword: grid deformation

Search Result 144, Processing Time 0.029 seconds

In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM (DQM을 이용한 비대칭 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2734-2740
    • /
    • 2010
  • The free in-plane vibration of asymmetric circular curved beams with varying cross-section is analyzed by the differential quadrature method (DQM) neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and boundary conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives the good accuracy even with a small number of grid points.

Free Vibration Analysis of Curved Beams with Varying Cross-Section (단면적이 변하는 곡선보의 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.453-462
    • /
    • 2009
  • The differential quadrature method(DQM) is applied to the free in-plane vibration analysis of circular curved beams with varying cross-section neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and end conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives good accuracy even with a small number of grid points. In addition, the corrected results are given for the beams not previously presented for this problem.

A Computational Study on Turbulent Flows around Single and Tandem Two-Dimensional Hydrofoils with Shallow Submergence

  • Kim, H.T.;Park, J.B.;Kim, W.J.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.

  • PDF

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF

Thermo-mechanical Analysis of Filp Chip PBGA Package Using $Moir\acute{e}$ Interferometry (모아레 간섭계를 이용한 Flip Chip PBGA 패키지의 온도변화에 대한 거동해석)

  • Kim, Do-Hyung;Choi, Yong-Seo;Joo, Jin-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1027-1032
    • /
    • 2003
  • Thermo-mechanical behavior of flip-chip plastic ball grid array (FC-PBGA) packages are characterized by high sensitive $Moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed for several temperatures. Deformation analysis of bending displacements of the packages and average strains in the solder balls for a single-sided package assembly and a double-sided package assembly are presented. The bending displacement of the double-sided package assembly is smaller than that of the single-sided one. The largest of effective strain occurred in the solder ball located at the edge of the chip and its magnitude of the double-sided package assembly is greater than that of single-sided one.

  • PDF

Limit Analysis of Axisymmetric Forward Extrusion (축 대칭 전방 압출의 극한 해석)

  • Kim, Byung-Min;Choi, In-Keun;Choi, Jae-Chan;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.93-104
    • /
    • 1991
  • Limit analysis is based on the duality theorem which equates the least upper bound to the greatest lower bound. In this study, limit analysis of axisymmetric forming problem with workhardening materials is formulated by minimizing the upper bound functional and finite element program is developed for forward estrusion. Limit loads, velocity and flow line fields are directly obtained under various process conditions and deformation characteristics such as strains, strain rates and grid distortion are obtained from the optimum velocity components by numerical calculation. The experimental observation was carried out for extrusion and compared with computed results. The good agreement between theoretical and experimental results is shown that the developed programming is very effective for the analysis of axisymmetric extrusion.

  • PDF

Strength and Ductility of R/C Columns with Welded Reinforcement Grids (용접된 띠철근으로 보강한 철근콘크리트 기둥의 강도와 연성)

  • ;Murat Saatcioglu;Mongi Grira
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.492-499
    • /
    • 1997
  • Experimental research was conducted to investigate structural performance of concrete columns confined with welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression accompanied by incrementally increasing lateral deformation reversals. The results indicate thar welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code.

  • PDF

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

An Experimental Study in the Forward-Backward Extrusion for the Cup-Cup shape (상하 컵형인 전후방압출공정에 관한 실험적 연구)

  • 김영득;한철호
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • In the simultaneous forward-backward extrusion the effects of some process variables including area reduction, stroke advance, materials(Al 2024 and commercial pure copper) on the extrusion load, plastic flow and height ratio of upper to lower extruded parts are experimentally investigated and analyzed. Grid-marking technique is employed to visualize the plastic flow. The influence of using split and original specimen on the extrusion load and height ratio is evaluated by experiments. Experimental results show that the plastic flow if oriented to the part of lower area reduction in the begining but it is usually variated during the overall process. The configurations of plastic deformation and plastic flow are dependent on the working materials and the lubricational conditions.

  • PDF

Study on Deformation Characteristics of Hole Expansion Test and Its Applicability (구멍확장시험의 변형특성 및 활용성 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.154-158
    • /
    • 2019
  • The hole expansion tests using conical punch, flat punch or hemispherical punch are widely used for stretch flangeability verification of HSS. In this study, we investigate the strain distribution on the shear edges of the hole expansion test using grid marking and a projector. A small crack at the edge is distributed, resulting in a large gap between the HER and the crack strain. The strain distribution at the edges is irregular due to anisotropy of sheet metal. While an edge perpendicular to the rolling direction indicate a lower strain level compared to an edge parallel to the rolling direction, edge cracks occur at the edge perpendicular to the rolling direction. To predict the manifestation of edge cracks in FE analysis, the result of the hole expansion test with a crack strain measurement may well be a better tool than FLD. In this case, the level of strain and the direction of the edge relative to the rolling direction should be well considered.