Jnurnfl of SOTECH Vol. 4, No. 1, PP- 11N20, 2000
ShipsOcean
Technology

© MARCH 2000

A Computational Study on Turbulent Flows around Single
and Tandem Two-Dimensional Hydrofoils with Shallow
Submergence

H.-T. Kim!, J.-B. Park! and W.-J. Kim?

! Chungnam National Untversity, Tagjon, Korea; E-mail: h-kim@cnu.ac.kr
? Korea Research Institute of Ships and Ocean Engineering, Tagjon, Korea

Abstract

Reynolds-averaged Navier-Stokes equations are numerically solved using a second-
order finite difference method for the analysis of turbulent flows around single and tan-
dem hydrofoils advancing under the free surface. The location of the free surface, not
known a priori, is computed from the kinematic free surface condition and the compu-
tational grid is conformed at each iteration to the free surface deformation. The eddy
viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method
is validated through the comparison of the numerical results with the experimental data
for a single hydrofoil of a Joukowski foil section. A computational study is also carried
out to investigate the effect of the submergence depth and the Froude number on the lift
and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for
several separation distances between the forward and aft foils to see the interference ef-
fect. The result shows clearly how the lift and drag change with the separation distance.
Keywords: tandem hydrofoils, free surface, drag and lift, interference ef-
fects

1 Introduction

Flow fields around a shallowly submerged hydrofoil advancing at a constant speed are strongly
influenced by the waves generaled on the free surface. A number of experimental, theotetical and
computational studies have been done 1o analyze and predict the lift and the surface pressure of,
as well as the waves generated by, a single hydrofoil. Kochin{1951) obtained some analytic re-
sults for the lift and the wave drag of a hydrofoil using the theory of analytic functions under the
assumption of large submergence. Parkin, Perry and Wu(1955), hereafter denoted as PPW, made
an extensive and important experimental work, in which the surface pressure distributions of a
hydrofoil of a Joukowski foil section were measured for various cases of the Froude number(£,)
and the submergence depth. Duncan(1983) carried out an experimental study throngh which he
measured the free surface elevations generated by a hydrofoil of NACA 0012 section and reported
the steady breaker following the hydrofoil was produced when the slope of the wave was 17°
or higher. Bai(1978) obtained potential flow solutions for the cases of the experimental setup of
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PPW by using a localized finite-element method and later Bai and Han{1994) improved their pre-
vious results by implementing the nonlinear free surface condition. Hino(1989) solved the Euler
and Navier-Stokes equations using a finite difference method for the solutions of the NACA 0012
foil section corresponding to the experiments of Duncan(1983). Shin and Mori(1989) calculated
the same flows including the effect of viscosity. Kim and Van(1995) carried out an experimental
and computational study on the flow around a hydrofoil of NACA 0012 section. In the experi-
ment, the free surface elevation and the surface pressure were measured at the same time. Lee
and Kim(1996) made a theoretical and computational work on the lift of and wave breaking be-
hind a shallowly submerged body and proposed the two-parameter plane which could be used for
predicting the possibility of wave breaking behind the submerged body. Recently, Van, Kim and
Kim{Van et al 1996) investigated the lift characteristics for submerged hydrofoils moving under
the free surface by both the potential flow analyses and the turbulent flow calculations. Although
there have been a lot of studies on a single hydrofoil as mentioned above, the study on tandem
hydrofoils is very rare at least to the authors’ knowledge. In the present study, the finite difference
method of Kim and Van (1995} has been extended for the analysis of turbulent flows around tan-
dem hydrofoils advancing at a constant speed under the free surface with a shallow submergence.
For the validation of the present method, the comparison of the numerical results [or a single hy-
drofoil with the experimental data of PPW{Parkin et al 1955} is first given. For tandem hydrofoils,
computations are carried out for several separation distances between the forward and aft foils to
investigate their interference effect.

2 Numerical Methods

As abovementioned, the finite difference method of Kim and Van(1995) has been extended for the
case of two hydrofoils in a tandem arrangement. Since the computational method was described
in details in Kim(1994), only a brief outline of the method is given herein.

Figure 1: Coordinate sysiem

2.1 Governing equations

In the Cartesian coordinates, whose origin is at the midchord of the hydrofoil, z-axis paraliel to the
uniform inflow and y-axis directed opposite to the gravitation, as shown in Figure 1, the Reynolds-
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averaged Navier-Stokes equations for the two-dimensional turbulent flow of an incompressible
fluid with an isotropic eddy viscosity model can be written in Cartesian tensor notation as follows:
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where the mean velocity components 'u w = (is,v), the coordinates z, = (z,¥) , thc inverse of the
effective Reynolds number Hlf = R -+ 14, and a modified pressure § = p + ¥ - : k The
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equations are nondimensionalized by the chord length of the hydrofoil C. the speed of the inflow
Uy, and the fluid density p. The Reynolds and Froude numbers are defined as £2, = UsC'/v and
F,. = Uy /+/gC, respectively, where v is the kinematic viscosity of the fluid and g the gravitational
acceleration. In the present study, the eddy viscosity, 4, is obtained by the turbulence model of
Baldwin-Lomax(1978) and the turbulent kinetic energy & is included in the modified pressure to
sustain the constitutive equation in the zero-equation turbulence model.

For the computation of flows in a physical domain of arbitrary geometry, the governing equa-
tions in the Cartesian coordinates (z, y) are transformed into general body-fitted coordinates (£, 7).
The transformed governing equations are given as follows:
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where the contravariant velocily components are defined by /% = b;‘"'uj /J and the definition of
geometric coefficients are given in the reference(Kim 1994).

2.2 Discretization and pressure-velocity coupling

To solve momentum equations numerically, convection lerms are discretized by the third order
upwind-biased differencing, diffusion terms by second order central differencing and the Euler-
implicit method is applied for the temporal integration of the equations. The discretized momen-
tum equations are solved by using ADI method. The implicit method in each direction results in a
set of simultaneous algebraic equations with the penta-diagonal coefficient matrices, for which a
highly vectorized solver is available if the pressure field is known. However, as the pressure field
is not known a priori, it must be determined so that the continuity equation is also satisfied. The
pressure-Poisson equation, derived from the continuity equation, is solved to obtain the pressure
ensuring the divergence-free velocity field. In the present study, the non-staggered grid system is
used and a discrete pressure-Poisson equations, designed to eliminate the checkerboard instability,
is solved to satisfy the discrete continuity up Lo an artificial dissipation term, which is sufficient to
avoid the even-odd decoupling of the pressure nodes and guarantee smoothness of the computed
pressure field. For more details the reader is referred to the reference{Sotiropoulos 1991).
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2.3 Boundary conditions

The boundaries of the physical domain consist of the inlet, the bottom surface, the body boundary,
the exit and the free surface. In the present study, two-block H-grid 1opology is employed. The
upper block includes the free surface and the upper side of a hydrofoil and the lower block includes
the bottom and the lower side of the hydrofoil. Along the block interface four grid points(two from
each side of the block) are overlapped to ensure the continuous change of flow variables across the
block interface. The boundary conditions on each of the boundaries are as follows. On the inlet,
the uniform flow conditions are specified, i.e., u = Uy, v = §i = 0. On the [0il surface, the no-slip
condition is imposed. i.e., u = v = dp/dn = 0 ( where n is normal to the surface). For the
bottom boundary, the symmetry condition is applied to account the effect of the restricted water
channel in the experiment. Velocity components are extrapolated on the exit. On the free surface,
whose location is determined as part of the solution, nonlinear inviscid free-surface conditions are
imposed, i.e., the dynamic conditions 8(u, v)/8y = 0,5 = h/I}* with the free surface elevation
h determined from the solution of the kinematic condition discretized in the finite-difference form

{hn+l _ hﬂ} Q}E
Al Oz

where the artificial damping function (z) is introduced to suppress the reflection of generated
waves from the downstream. Following Hino(1993), the quadratic form of the damping function
is adopted, ie., y(x) = A(ﬁ)gh(ﬂ forzy < 2 < z. and y(z) = 0, otherwise. Here, 4 is a
constant controling the amount of damping, =, the x-coordinate of the exit and =4 15 defined such
as Tq = x, — 27 F,.2. It should be noticed that the damping zone is set about one wave length from
the exit boundary. In the present study, (%)”+1 is approximated using the quadratic interpolation
in the upwind direction and A of 10 is used. The h is set zero al the inlet and extrapolated at
the exit. At each time step, the grid of the upper block is reconstructed to conform the newly
obtained free surface elevation while the inviscid dynamic conditions are imposed on the updated

free surface.
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Figure 2: Computaticnal grid system
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3 Result and Discussion

The present solution method is applied for the calculation of turbulent flows around a single and
tandem hydrofoils of a 12% thick Joukowski section. For all the cases presented here, the angle of
attack of the hydrofoil is set 5°. A body-fitted grid is generated by using the elliptic grid generation
method of Visbal and Knight{1982) and the details can be found in Kim(1994). A two-block H-
arid topology is employed in which the upper block includes the free surface and the upper side
of a hydrofoil and the lower block includes the bottom and the lower side of the hydrofoil. Figure
2 shows a typical computational grid. Grid poinis are clustered near the hydrofoil surface as well
as the free surface. In the following, the results are presented first for the single hydrofail. Then,
the computed resulis of tandem hydrofoils are described.
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Figurce 3: Surface pressure distribution (£, =0.95)

3.1 Single hydrofoil

In order to show the capability of the present method, some of the results for the surface pressure
distributions, which were given in Figure 9 of the reference(Kim and Van 1995), are reproduced
in Figure 3. The angle of attack «v is 59, the Froude number F, is 0.95 and the Reynolds number
is 2.39 x 10%. The calculated surface pressures agree well with experiment. Tt is clearly shown the
pressure on the upper(suction) side increases as the depth of submergence decreases and the lift of
the hydrofoil decreases consequently, Figure 4 shows the surface pressure distributions lor various
Froude numbers { F.= 0,604, 0.632, 0.821, 0.929, 0.984, 1.072) but with the fixed submergence
depth(S/C = 0.25), The calculated resulis are generally in good agreement with the experiment
of PPW(Parkin et al 1955) except for the cases of 7. = (.004 and 0.632 where the computed
pressures on the upper side show large differences from the measurements. These difference may
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be due to the wave breaking, which cannot be treated by the present computational method. At
this submergence depth, the hydrofoil produces a negative lift for Froude numbers lower than 1
and a very small hift even for Froude numbers much higher than 1.
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Figure 4: Surface pressure distribution for various Froude number

Figures 5 and 6 present, respectively, the change of the lift and drag coefficients for various
submergence depths and Froude numbers. It is shown clearly that the lift of the hydrofoil decreases
as the depth of submergence decreases. The lift approaches to its limit of infinite submergence with
the smaller submergence depth, the lower the Froude number is. Note the well-known fact that the
wave length(\) is proportional to 27 F,%C and the free surface effect almost vanishes at § = 0.5\
For F, = 1.414, the drag decreases as the submergence depth decreases. For ¥, = 0.821 and 0.95
the drag reaches to its maximum at about 5/C = 0.9 and it decreases as the depth of submergence
either decreases or increases from the maximum point. The trend is similar for F,. = 0.632 , excepl
the value at $/C =0.5.
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Figure 5: Lift coefficient vs. depth of Figure 6: Drag coefficient vs. depth of
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Figure 7: Lift Coefficient vs. Froude Figure 8: Drag Coefficient vs. Froude
number number

Figures 7 and 8 present the calculated lift and drag coefficients, respectively, as a function of
F,. For S/C =0.75, 1.0, 1.8, the lift decreases as the Froude number increases. This may be
understood better if we consider the submergence depth normalized by the wave Jegth correspond-
ing to each Froude number. In other word, the lift decreases as S/ A decreases. For 5/ =0.25 ,
the [ift is negative for most Froude numbers presented here and decreases as the Froude number
decreases. The lift coefficient curve [or S§/C = 0.5 follows a similar trend except the value at ¥, =
0.632 . The drag coefficients appear 1o decreases as the Fronde number increases except those for
S5/C = 1.8 have the opposite behavior. Comparisons of the numerical results with the estimations
based on the measured surface pressures are given in Figure 9 and 10 for the lift and drag coefii-
cients for §/C = 0.25 . An overall good agreement is achieved but there are some discrepancies
at Iy = 0.632 and 0.604 for the lift and drag coefficients, respectively.
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Figure 9: Lift Coefficient vs.
number (§/C =0.25)

3.2 Tandem hydrofoils

Froude

Figure 10: Drag Coefficient vs. Froude
number {S/C = (1.25)

The results of tandem hydrofoils are presented for several separation distances between the for-

ward and aft foils to show their interference effect.

The forward and aft foils have the same

geometry and their angle of attack is 59, £, = 0.95 and S/C' = 1.8 . Although no direct compar-
ison can be made due to the lack of experimental information, the computed flows exhibit many
interesting features of the interference cffects between two hydrofoils in a tandem arrangement.

Fr=0.45, 8/C=1.2, o=5"

05 T T T T T TT T T T T T T D& AL AR A4 M Ll J T El T T T T Tir

o b - s-ereon DUC=2835 ] 7 i Dge=1188 ]
s s DG Y —-m-—es DYGetZEE ]

o1l . D=8 506 sl - D=7 153
o1 Singlotall e Gingla foll

. v
LERS i
'

wc

Fr=0.93, §/C=14, u=5"

Figure 11: Interference effect for sep-
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Figure 12: Interference effect for sep-
aration distance (wave, D /C = 1.168,
4.238,7.153)

Figure 11 shows the interference effect for the three different separations, i.e., g /C =2.835,
5.671, 8.506, where the separation distance 3, is the horizontal distance between the mudchord
points of the forward and aft hydrofoils. These three separations correspond to Dg = A/2, A, 1.5,
respectively. The diminution of the wave is conspicuous for Dg = 0.5A. The second and third
hollows and humps are salient in the wave profiles for Dg = A. For Dg = 1.5A, there is a moder-
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ate attenuation of the wave. Figure 12 shows the results for Dg/C = 1.168, 4.238 corresponding
to Dg = 0.2, 0.75A, 1.25, respectively. The diminution of the wave is evident for Dg = 0.75A.
For Dg — 1.252, there is a moderate angmentation of the wave. The second and third hollows
and humps are considerably enlarged for Dg = 0.2A.
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Figure 13: Lift coefficient vs. separa- Figure 14: Drag coefficient vs. separa-
tion distance tion distance

Finally, in Figures 13 and 14, the lift and drag of the forward and aft foils is presented as
a function of I}g/C with those of the single foil as the reference. The lift of the forward foil
increases monotonously as D decreases and it reaches the value with a gain of 18% over that
of the single hydrofeil for Dg/C = 1.168. The lift coefficient of the aft foil fluctuates with
Dg/C . Tt reaches the peak values with about 14% increase over that of the single hydrotoil for
Dg/C = 2.835 and 8.506, which corresponds to Dg = 0.5 and 1.5, respectively. On the other
hand, it reaches the trough values with about 25% decrease from that of the single hydrofoil for
Dg/C = 1.168 and 5.671 corresponding to, respectively, Dy = 0.2) and A . The drag coefficient
of the aft foil also Auctuates with Dg/C, while the drag of the forward foil is kept almost constant
except the sudden decrease for Dg/C = 1.168. The former for Dg/C" = 1.168 becomes 0.04
which is about twice of the drag coefficient of the single hydrofoil. From a point of view for the
design of tandem hydrofoils, £5/C = 2.835 or 8.506 may be an optimum separation (o maximize
the total lift and to minimize the total drag, while Dg/C = 1.168 or 4.238 could be a choice for
the good stability.

4 Conclusions

In present study, Reynolds-averaged Navier-Stokes equations are numerically solved (or the anal-
ysis of turbulent flows around a single and tandem hydrofoils advancing under the free surface.
Validation of the present method is accomplished by the comparison of the numerical results with
the experimental data for a single hydrofoil of a 12% thick Joukowski section. The calculated sur-
face pressures are m good agreement with experiment. A further computational study s carried
out to investigate the effect of the submergence depth and the Froude number on the lifi and the
drag of the hydrofoil. For tandem hydrofoils. computations are performed far several separation
distances between the [orward and aft foils to investigate the interference effect. The resuits clearly
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show how the lift and drag changes with the separation distance which predominately controls the
lifting-body as well as the wave interference effects.
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