• Title/Summary/Keyword: generalized metric space

Search Result 108, Processing Time 0.022 seconds

FIXED POINT THEOREMS IN MENGER SPACES USING AN IMPLICIT RELATION

  • Chauhan, Sunny;Khan, M. Alamgir;Pant, B.D.
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.551-564
    • /
    • 2013
  • In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica, 24(5) (2008), 867-876] introduced the notion of occasionally weakly compatible mappings in metric spaces. In this paper, we prove some common fixed point theorems for families of occasionally weakly compatible mappings in Menger spaces using an implicit relation. We also give an illustrative example to support our main result.

Common Fixed Point Theorems of Commuting Mappinggs

  • Park, Wee-Tae
    • The Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.41-45
    • /
    • 1987
  • In this paper, we give several fixed point theorems in a complete metric space for two multi-valued mappings commuting with two single-valued mappings. In fact, our main theorems show the existence of solutions of functional equations f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ and $\chi$=f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ under certain conditions. We also answer an open question proposed by Rhoades-Singh-Kulsherestha. Throughout this paper, let (X, d) be a complete metric space. We shall follow the following notations : CL(X) = {A; A is a nonempty closed subset of X}, CB(X)={A; A is a nonempty closed and founded subset of X}, C(X)={A; A is a nonempty compact subset of X}, For each A, B$\in$CL(X) and $\varepsilon$>0, N($\varepsilon$, A) = {$\chi$$\in$X; d($\chi$, ${\alpha}$) < $\varepsilon$ for some ${\alpha}$$\in$A}, E$\sub$A, B/={$\varepsilon$ > 0; A⊂N($\varepsilon$ B) and B⊂N($\varepsilon$, A)}, and (equation omitted). Then H is called the generalized Hausdorff distance function fot CL(X) induced by a metric d and H defined CB(X) is said to be the Hausdorff metric induced by d. D($\chi$, A) will denote the ordinary distance between $\chi$$\in$X and a nonempty subset A of X. Let R$\^$+/ and II$\^$+/ denote the sets of nonnegative real numbers and positive integers, respectively, and G the family of functions ${\Phi}$ from (R$\^$+/)$\^$s/ into R$\^$+/ satisfying the following conditions: (1) ${\Phi}$ is nondecreasing and upper semicontinuous in each coordinate variable, and (2) for each t>0, $\psi$(t)=max{$\psi$(t, 0, 0, t, t), ${\Phi}$(t, t, t, 2t, 0), ${\Phi}$(0, t, 0, 0, t)} $\psi$: R$\^$+/ \longrightarrow R$\^$+/ is a nondecreasing upper semicontinuous function from the right. Before sating and proving our main theorems, we give the following lemmas:

  • PDF

Suboptimum detection of space-time trellis coded OFDM over slowly fading channel (느린 페이딩 채널에서 공간-시간 트렐리스 부호화된 OFDM의 준최적 검파)

  • Kim, Young-Ju;Li, Xun;Park, Noe-Yoon;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.28-33
    • /
    • 2007
  • We present a space-time trellis coded OFDM system in flow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis show that the decoding metric of GPRC include the metrics of maximum likelihood (ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective lading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

SOME FIXED POINT THEOREMS VIA COMMON LIMIT RANGE PROPERTY IN NON-ARCHIMEDEAN MENGER PROBABILISTIC METRIC SPACES

  • Nashine, Hemant Kumar;Kadelburg, Zoran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.789-807
    • /
    • 2015
  • We propose coincidence and common fixed point results for a quadruple of self mappings satisfying common limit range property and weakly compatibility under generalized ${\Phi}$-contractive conditions i Non-Archimedean Menger PM-spaces. As examples we exhibit different types of situations where these conditions can be used. A common fixed point theorem for four finite families of self mappings is presented as an application of the proposed results. The existence and uniqueness of solutions for certain system of functional equations arising in dynamic programming are also presented as another application.

On Common Fixed Prints of Expansive Mappings

  • Kang, Sin-Min;Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.41-45
    • /
    • 1990
  • S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki proved some fixed point theorems on expansion mappings, which correspond some contractive mappings. In a recent paper, B. E. Rhoades generalized the results for in of mappings. In this paper, we obtain the following theorem, which generalizes the result of B. E. Rhoades. THEOREM. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying the following conditions: (1) ${\Phi}$(d(A$\chi$, By))$\geq$d(Sx, Ty) holds for all x and y in X, where ${\Phi}$ : R$\^$+/ \longrightarrowR$\^$+/ is non-decreasing, uppersemicontinuous and ${\Phi}$(t) < t for each t > 0, (2) A and B are surjective, (3) one of A, B, S and T is continuous, and (4) the pairs A, S and B, T are compatible. Then A, B, S and T have a unique common fixed point in X.

  • PDF

On comonotonically additive interval-valued functionals and interval-valued Choquet integrals(II) (보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(II))

  • Jang, Lee-Chae;Kim, Tae-Kyun;Jeon, Jong-Duek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Schmeidler[14] and Narukawa[12], and prove some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space, cf.[9,10,11,13].

PROXIMAL TYPE CONVERGENCE RESULTS USING IMPLICIT RELATION AND APPLICATIONS

  • Om Prakash Chauhan;Basant Chaudhary;Harsha Atre
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.209-224
    • /
    • 2024
  • The goal of this study is to instigate various new and novel optimum proximity point theorems using the notion of implicit relation type ℶ-proximal contraction for non-self mappings. An illustrated example is used to demonstrate the validity of the obtained results. Furthermore, some uniqueness results for proximal contractions are also furnished with partial order and graph. Various well-known discoveries in the present state-of-the-art are enhanced, extended, unified, and generalized by our findings. As an application, we generate some fixed point results fulfilling a modified contraction and a graph contraction, using the profundity of the established results.

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain;Hemant Kumar, Nashine;J.K., Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.709-730
    • /
    • 2022
  • We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.