References
- M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), no. 1, 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
- R. Bellman and E. S. Lee, Functional equations in dynamic programming, Aequationes Math. 17 (1978), no. 1, 1-18. https://doi.org/10.1007/BF01818535
- T. C. Bhakta and S. Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl. 98 (1984), no. 2, 348-362. https://doi.org/10.1016/0022-247X(84)90254-3
- S. S. Chang, Fixed point theorems for single-valued and multi-valued mappings in Non-Archimedean Menger probabilistic metric spaces, Math. Japon. 35 (1990), no. 5, 875-885.
- S. S. Chang, Y. J. Chom, and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, New York, 2001.
- S. Chauhan and S. Kumar, Fixed point theorems in Non-Archimedean Menger PM-spaces using common property (E.A), Asian-Eur. J. Math. 5 (2012), no. 4, 13 pages.
- S. Chauhan, S. Radenovic, M. Imdad, and C. Vetro, Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E.A) and application to functional equations in dynamic programming, Rev. R. Acad. Cienc. Ex- actas Fis. Nat. Ser. A Math. 108 (2014), no. 2, 795-810. https://doi.org/10.1007/s13398-013-0142-6
- S. Chauhan and J. Vujakovic, Some fixed point theorems for weakly compatible map- pings in Non-Archimedean Menger probabilistic metric spaces via common limit range property, Matematiche (Catania) 68 (2013), no. 2, 77-90.
- Y. J. Cho, S. M. Kang, and S. S. Chang, Coincidence point theorems for nonlinear hybrid contractions in Non-Archimedean Menger probabilistic metric spaces, Demonstratio Math. 28 (1995), no. 1, 19-32.
- Y. J. Cho, S. M. Kang, and S. S. Chang, Common fixed point theorems for compatible mappings of type (A) in Non- Archimedean Menger PM-spaces, Math. Japon. 46 (1997), no. 1, 169-179.
- R. C. Dimri and B. D. Pant, Fixed point theorems in non-Archimedean Menger spaces, Kyungpook Math. J. 31 (1991), no. 1, 89-95.
- M. Grabiec, Y. J. Cho, and V. Radu, On Nonsymmetric Topological and Probabilistic Structures, Nova Science Publishers, New York, 2006.
- O. Hadzic, A note on Istratescu's fixed point theorems in non-Archimedean probabilistic metric spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 24(72) (1980), no. 4, 359-362.
- M. Imdad, J. Ali, and M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos Solitons Fractals 42 (2009), no. 5, 3121-3129. https://doi.org/10.1016/j.chaos.2009.04.017
-
M. Imdad, S. Chauhan, and Z. Kadelburg, Fixed point theorems for mappings with common limit range property satisfying generalized (
${\psi},{\varphi}$ )-weak contractive conditions, Math. Sci. (Springer) 7 (2013), Art. 16, 8 pp. -
M. Imdad, S. Chauhan, Z. Kadelburg, and C. Vetro, Fixed point theorems for non-self mappings in symmetric spaces under
$\varphi$ -weak contractive conditions and an application to functional equations in dynamic programming, Appl. Math. Comput. 227 (2014), 469-479. https://doi.org/10.1016/j.amc.2013.11.014 -
M. Imdad, B. D. Pant, and S. Chauhan, Fixed point theorems in Menger spaces using the (
$CLR_ST$ ) property and applications, J. Nonlinear Anal. Optim. 3 (2012), no. 2, 225-237. - I. Istratescu, On some fixed point theorems with applications to the nonarchimedean Menger spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 3, 374-379.
- I. Istratescu, Fixed point theorems for some classes of contraction mappings on nonar-chimedean probabilistic metric space, Publ. Math. Debrecen 25 (1978), no. 1-2, 29-34.
- I. Istratescu and G. Babescu, On the completion on non-Archimedean probabilistic metric spaces, Seminar de spatii metrice probabiliste, Universitatea Timisoara, Nr. 17, 1979.
- I. Istratescu and N. Crivat, On some classes of non-Archimedean probabilistic metric spaces, Seminar de spatii metrice probabiliste, Universitatea Timisoara, Nr. 12, 1974.
- I. Istrat. escu and G. Palea, On non-Archimedean probabilistic metric spaces, An. Univ. Timisoara Ser. Sti. Mat. 12 (1974/77), no. 2, 115-118.
- G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), no. 2, 199-215.
- G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- M. A. Khan, Common fixed point theorems in non-Archimedean Menger PM-spaces, Int. Math. Forum 6 (2011), no. 40, 1993-2000.
- M. A. Khan and Sumitra, A common fixed point theorem in non-Archimedean Menger PM-space, Novi Sad J. Math. 39 (2009), no. 1, 81-87.
- S. Kutukcu and S. Sharma, A common fixed point theorem in non-Archimedean Menger PM-spaces, Demonstratio Math. 42 (2009), no. 4, 837-849.
- H. K. Pathak, Y. J. Cho, S. S. Chang, and S. M. Kang, Compatible mappings of type (P) and fixed point theorems in metric spaces and probabilistic metric spaces, Novi Sad J. Math. 26 (1996), no. 2, 87-109.
- K. P. R. Rao and E. T. Ramudu, Common fixed point theorem for four mappings in non-Archimedean Menger PM-spaces, Filomat 20 (2006), no. 2, 107-113. https://doi.org/10.2298/FIL0602113R
- B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
- V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on prob- abilistic metric spaces, Math. Systems Theory 6 (1972), 97-102. https://doi.org/10.1007/BF01706080
- B. Singh, A. Jain, and P. Agarwal, Semi-compatibility in non-Archimedean Menger PM-space, Comment. Math. 49 (2009), no. 1, 15-25.
- B. Singh, A. Jain, and M. Jain, Compatible maps and fixed points in non-Archimedean Menger PM-spaces, Int. J. Contemp. Math. Sci. 6 (2011), no. 37-40, 1895-1905.
- S. L. Singh and B. D. Pant, Common fixed points of weakly commuting mappings on non-Archimedean Menger PM-spaces, Vikram J. Math. 6 (1987), 27-31.
- S. L. Singh, B. D. Pant, and S. Chauhan, Fixed point theorems in non-Archimedean Menger PM-spaces, J. Nonlinear Anal. Optim. 3 (2012), no. 2, 153-160.
- B. Singh, R. K. Sharma, and M. Sharma, Compatible maps of type (P) and common fixed points in non-Archimedean Menger PM-spaces, Bull. Allahabad Math. Soc. 25 (2010), no. 1, 191-200.
- W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. 2011, Article ID 637958, 14 pages, 2011.
- W. Sintunavarat and P. Kumam, Common fixed points for R-weakly commuting in fuzzy metric spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat. 58 (2012), no. 2, 389-406. https://doi.org/10.1007/s11565-012-0150-z
-
C. Vetro, S. Chauhan, E. Karapinar, and W. Shatanawi, Fixed points of weakly com- patible mappings satisfying generalized
$\varphi$ -weak contractions, Bull. Malaysian Math. Sci. Soc. (2014), in press.
Cited by
- Implicit relations related to ordered orbitally complete metric spaces and applications vol.111, pp.2, 2017, https://doi.org/10.1007/s13398-016-0303-5