• Title/Summary/Keyword: generalized gradient Ricci soliton

Search Result 6, Processing Time 0.019 seconds

GENERALIZED RICCI SOLITONS ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

  • Pradip Majhi;Raju Das
    • The Pure and Applied Mathematics
    • /
    • v.31 no.4
    • /
    • pp.355-364
    • /
    • 2024
  • In the present paper we study 3-dimensional contact metric manifolds with 𝜑Q = Q𝜑 admitting generalized Ricci solitons and generalized gradient Ricci solitons. It is proven that if a 3-dimensional contact metric manifold satisfying 𝜑Q = Q𝜑 admits a generalized Ricci soliton with non zero soliton vector field V being pointwise collinear with the characteristic vector field ξ, then the manifold is Sasakian. Also it is shown that if a 3-dimensional compact contact metric manifold with 𝜑Q = Q𝜑 admits a generalized gradient Ricci soliton then either the soliton is trivial or the manifold is flat or the scalar curvature is constant.

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Huchchappa, Aruna Kumara;Naik, Devaraja Mallesha;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1315-1328
    • /
    • 2019
  • The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

h-almost Ricci Solitons on Generalized Sasakian-space-forms

  • Doddabhadrappla Gowda, Prakasha;Amruthalakshmi Malleshrao, Ravindranatha;Sudhakar Kumar, Chaubey;Pundikala, Veeresha;Young Jin, Suh
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.715-728
    • /
    • 2022
  • The aim of this article is to study the h-almost Ricci solitons and h-almost gradient Ricci solitons on generalized Sasakian-space-forms. First, we consider h-almost Ricci soliton with the potential vector field V as a contact vector field on generalized Sasakian-space-form of dimension greater than three. Next, we study h-almost gradient Ricci solitons on a three-dimensional quasi-Sasakian generalized Sasakian-space-form. In both the cases, several interesting results are obtained.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.