Acknowledgement
The second author is financially supported by the council of scientific and industrial research, India (File no. 09/0028(11991)/2021-EMR-I). The authors are thankful to the Referee for his/her constructive suggestions in improving the paper.
References
- A. Ghosh: Ricci almost solitons and contact geometry. Adv. Geom 21 (2021), no. 2, 169-178. https://doi.org/10.1515/advgeom-2019-0026
- A.H. Kumara & V. Venkatesha: Gradient Einstein-type contact metric manifolds. Commun. Korean Math. Soc. 35 (2020), no. 2, 639-651. https://doi.org/10.4134/CKMS.c190247
- D. Dey & P. Majhi: Almost Kenmotsu metric as a conformal Ricci soliton. Conform. Geom. Dyn. 23 (2019), 105-116. https://doi.org/10.1090/ecgd/335
- D.E. Blair, K. Themis & R. Sharma: A classification of 3-dimensional contact metric manifolds with Q𝜑 = 𝜑Q. Kodai Math. J. 13 (1990), no. 3, 391-401. https://doi.org/10.2996/kmj/1138039284
- D.E. Blair: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Birkhauser Boston, Ltd., Boston, MA (2010).
- G. Kaimakamis & K. Panagiotidou: *-Ricci solitons of real hypersurface in non-flat complex space forms. J. Geom. Phy. 76 (2014), 408-413. https://doi.org/10.1016/j.geomphys.2014.09.004
- K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972) 93-103. https://doi.org/10.2748/tmj/1178241594
- M.D. Siddiqi: Generalized Ricci Solitons on Trans-Sasakian Manifolds. Khayyam J. Math. 4 (2018), no. 2, 178-186. https://doi.org/10.22034/KJM.2018.63446
- M.N. Devaraja, A.H. Kumara & V. Venkatesha: Riemann Soliton within the framework of contact geometry. Quaest. Math. 44 (2021), no. 5, 637-651. https://doi.org/10.2989/16073606.2020.1732495
- P. Majhi, U.C. De & Y.J. Suh: ∗-Ricci solitons on Sasakian 3-manifolds. Publicationes Mathematicae 93 (2018), no. 1-2, 241-252. https://doi.org/10.5486/PMD.2018.8245
- P. Nurowski & M. Randall: Generalized Ricci Solitons. The J. Geom. Ana. 26 (2016), 1280-1345). https://doi.org/10.1007/s12220-015-9592-8
- S. Pigola, M. Rigoli, M. Rimoldi & A. Setti: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 757-799. https://doi.org/10.2422/2036-2145.2011.4.01
- S. Tachibana: On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 11 (1959) 247-265.
- V. Venkatesha & A.H. Kumara: Quasi Yamabe solitons on 3-Dimensional Contact Metric Manifolds with Q𝜑 = 𝜑Q. Communications in Mathematics 30 (2022), no. 1, 191-199. https://doi.org/10.46298/cm.9695
- W. Lin Feng: On noncompact quasi Yamabe gradient solitons. Differential Geom. Appl. 31 (2013), no. 3, 337-348. https://doi.org/10.1016/j.difgeo.2013.03.005
- W. Yaning: Yamabe solitons on three-dimensional Kenmotsu manifolds. Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. https://doi.org/10.36045/bbms/1473186509
- Y. Fei & Z. Liangdi: Geometry of gradient Yamabe solitons. Ann. Global Anal. Geom. 50 (2016), no. 4, 367-379. https://doi.org/10.1007/s10455-016-9516-2
- Z. Huang, W. Lu & F. Su: The extended ouasi-Einstein manifolds with generalized Ricci solitons. arXiv:2209.11921v1 [math.DG]. https://doi.org/10.48550/arXiv.2209.11921