• Title/Summary/Keyword: gate-VDD

Search Result 13, Processing Time 0.032 seconds

Design of a Gate-VDD Drain-Extended PMOS ESD Power Clamp for Smart Power ICs (Smart Power IC를 위한 Gate-VDD Drain-Extened PMOS ESD 보호회로 설계)

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.1-6
    • /
    • 2008
  • The holding voltage of the high-voltage MOSFETs in snapback condition is much smaller than the power supply voltage. Such characteristics may cause the latcup-like problems in the Smart Power ICs if these devices are directly used in the ESD (Electrostatic Discharge) power clamp. In this work, a latchup-free design based on the Drain-Extended PMOS (DEPMOS) adopting gate VDD structure is proposed. The operation region of the proposed gate-VDD DEPMOS ESD power clamp is below the onset of the snapback to avoid the danger of latch-up. From the measurement on the devices fabricated using a $0.35\;{\mu}m$ BCD (Bipolar-CMOS-DMOS) Process (60V), it was observed that the proposed ESD power clamp can provide 500% higher ESD robustness per silicon area as compared to the conventional clamps with gate-driven LDMOS (lateral double-diffused MOS).

A Design of an Adder and a Multiplier on $GF(2^2)$ Using T-gate (T-gate를 이용한 $GF(2^2)$상의 가산기 및 승산기 설계)

  • Yoon, Byoung-Hee;Choi, Young-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.56-62
    • /
    • 2003
  • In this paper, we designed a adder and a multiplier using current mode T-gate on $GF(2^2)$. The T-gate is consisted of current mirror and pass transistor, the designed 4-valued T-gate used adder and multiplier on $GF(2^2)$. We designed its under 1.5um CMOS standard technology. The unit current of the circuits is 15㎂, and power supply is 3.3V VDD. The proposed current mode CMOS operator have a advantage of module by T-gate`s arrangement, and so we easily implement multi-valued operator.

  • PDF

Design of Low-Area DC-DC Converter for 1.5V 256kb eFlash Memory IPs (1.5V 256kb eFlash 메모리 IP용 저면적 DC-DC Converter 설계)

  • Kim, YoungHee;Jin, HongZhou;Ha, PanBong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2022
  • In this paper, a 1.5V 256kb eFlash memory IP with low area DC-DC converter is designed for battery application. Therefore, in this paper, 5V NMOS precharging transistor is used instead of cross-coupled 5V NMOS transistor, which is a circuit that precharges the voltage of the pumping node to VIN voltage in the unit charge pump circuit for the design of a low-area DC-DC converter. A 5V cross-coupled PMOS transistor is used as a transistor that transfers the boosted voltage to the VOUT node. In addition, the gate node of the 5V NMOS precharging transistor is made to swing between VIN voltage and VIN+VDD voltage using a boost-clock generator. Furthermore, to swing the clock signal, which is one node of the pumping capacitor, to full VDD during a small ring oscillation period in the multi-stage charge pump circuit, a local inverter is added to each unit charge pump circuit. And when exiting from erase mode and program mode and staying at stand-by state, HV NMOS transistor is used to precharge to VDD voltage instead of using a circuit that precharges the boosted voltage to VDD voltage. Since the proposed circuit is applied to the DC-DC converter circuit, the layout area of the 256kb eFLASH memory IP is reduced by about 6.5% compared to the case of using the conventional DC-DC converter circuit.

A Low Power Antenna Switch Controller IC Adopting Input-coupled Current Starved Ring Oscillator and Hardware Efficient Level Shifter (입력-결합 전류 제한 링 발진기와 하드웨어 효율적인 레벨 시프터를 적용한 저전력 안테나 스위치 컨트롤러 IC)

  • Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.180-184
    • /
    • 2013
  • In this paper, a low power antenna switch controller IC is designed using a silicon-on-insulator (SOI) CMOS technology. To improve power handling capability and harmonic distortion performance of the antenna switch, the proposed antenna switch controller provides 3-state logic level such as +VDD, GND, and -VDD for the gate and body of switch of FETs according to decoder signal. By employing input-coupled current ring oscillator and hardware efficient level shifter, the proposed controller greatly reduces power consumption and hardware complexity. It consumes 135 ${\mu}A$ at a 2.5 V supply voltage in active mode, and occupies $1.3mm{\times}0.5mm$ in area. In addition, it shows fast start-up time of 10 ${\mu}s$.

Low voltage Low power OTAs using bulk driven in 0.35㎛ CMOS Process (0.35㎛ CMOS 공정에서 벌크 입력을 사용한 저전압 저전력 OTAs)

  • Kang, Seong-Ki;Jung, Min-Kyun;Han, Dae-Deok;Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.451-454
    • /
    • 2015
  • This paper introduces 3 type of OTAs with $0.35-{\mu}m$ standard CMOS technology for Low-Power, Low-Voltage. The first type is a two-stage OTA designed to operate with a 1-V VDD and it has $1.774{\mu}W$ low power consumption. All transistors are operating in strong inversion. It takes Gm-Enhancement techniques to compensate gm, which is lowered by Bulk-Driven technique and has an Wide swing current mirror for low voltage operation and a Class-A output. The second type is a Two-stage OTA designed to operate with a 0.8-V VDD and It has 52nW low power consumption and 112dB high gain. The current mirror uses Composite Transistor binding Gates of two MOSFET to raise Rout which is similar with cascode structure. The third type is a Two-stage OTA designed to operate with a 0.6-V VDD and It has 160nW low power consumption and 72dB high gain. It takes Level Shift technique by Common Gate structure to amplify signals without additional bias voltage at second stage.

  • PDF

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.142-144
    • /
    • 2006
  • In this paper, the Ternary adder and multiplier are implemented by current-mode CMOS. First, we implement the ternary T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second, we implement the circuits to be realized 2-variable ternary addition table and multiplication table over finite fields GF(3) with the ternary T-gates. Finally, these operation circuits are simulated by Spice under $1.5{\mu}m$ CMOS standard technology, $1.5{\mu}m$ unit current, and 3.3V VDD voltage. The simulation results have shown the satisfying current characteristics. The ternary adder and multiplier implemented by current-mode CMOS are simple and regular for wire routing and possess the property of modularity with cell array.

  • PDF

A design of BIST/BICS circuits for detection of fault and defect and their locations in VLSI memories (고집적 메모리의 고장 및 결함 위치검출 가능한 BIST/BICS 회로의 설계)

  • 김대익;배성환;전병실
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2123-2135
    • /
    • 1997
  • In this paepr, we consider resistive shorts on drain-source, drain-gate, and gate-source as well as opens in MOSFETs included in typical memory cell of VLSI SRAM. Behavior of memeory is observed by analyzing voltage at storage nodes of memeory and IDDQ(quiescent power supply current) through PSPICE simulation. Using this behavioral analysis, an effective testing algorithm of complexity O(N) which can be applied to both functional testing and IDDQ testing simultaeously is proposed. Built-In Self Test(BIST) circuit which detects faults in memories and Built-In Current Sensor(BICS) which monitors the power supply bus for abnormalities in quescent current are developed and imprlemented to improve the quality and efficiency of testing. Implemented BIST and BICS circuits can detect locations of faults and defects in order to repair faulty memories.

  • PDF

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Jang, Sung-Won;Park, Byung-Ho;Park, Sang-Joo;Han, Young-Hwan;Seong, Hyeon-Kyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1760-1762
    • /
    • 2010
  • 본 논문에서 3치가산기와 승산기(multiplier)는 전류모드 CMOS에 의해서 구현된다. 첫째, 3치 T-gate를 집적회로 설계의 유효 가용성을 갖고 있는 전류모드 CMOS를 이용하여 구현한다. 둘째, 3치 T-gates를 이용해 회로가 유한체 GF (3)에 대하여 2변수 3치 가산표 (2-variable ternary addition table) 및 구구표 (multiplication table)가 실현되도록 구현한다. 마지막으로, 이러한 동작 회로들은 1.5 CMOS 표준 기술과 $15{\mu}A$ 단위전류(unit current) 및 3.3V 소스 전압 (VDD voltage)에 의해 활성화 된다. 활성화 결과는 만족할 만한 전류 특성을 나타냈다. 전류 모드 CMOS에 의하여 실행되는 3치가산기 및 승산기는 단순하며 와이어 라우팅(wire routing)에 대하여 정규적이고, 또한 셀 배열 (cell array)과 함께 모듈성 (modularity)의 특성을 갖고 있다.

Design of 256Kb EEPROM IP Aimed at Battery Applications (배터리 응용을 위한 1.5V 단일전원 256Kb EEPROM IP 설계)

  • Kim, Young-Hee;Jin, RiJun;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.558-569
    • /
    • 2017
  • In this paper, a 256Kb EEPROM IP aimed at battery applications using a single supply of 1.5V which is embedded into an MCU is designed. In the conventional cross-coupled VPP (boosted voltage) charge pump using a body-potential biasing circuit, cross-coupled PMOS devices of 5V in it can be broken by the junction or gate oxide breakdown due to a high voltage of 8.53V applied to them in exiting the program or erase mode. Since each pumping node is precharged to the input voltage of the pumping stage at the same time that the output node is precharged to VDD in the cross-coupled charge pump, a high voltage of above 5.5V is prevented from being applied to them and thus the breakdown does not occur. Also, all erase, even program, odd program, and all program modes are supported to reduce the times of erasing and programming 256 kilo bits of cells. Furthermore, disturbance test time is also reduced since disturbance is applied to all the 256 kilo bits of EEPROM cells at once in the cell disturb test modes to reduce the cell disturbance testing time. Lastly, a CG driver with a short disable time to meet the cycle time of 40ns in the erase-verify-read mode is newly proposed.

Design of eFuse OTP IP for Illumination Sensors Using Single Devices (Single Device를 사용한 조도센서용 eFuse OTP IP 설계)

  • Souad, Echikh;Jin, Hongzhou;Kim, DoHoon;Kwon, SoonWoo;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • A light sensor chip requires a small capacity eFuse (electrical fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) to trim analog circuits or set initial values of digital registers. In this paper, 128-bit eFuse OTP IP is designed using only 3.3V MV (Medium Voltage) devices without using 1.8V LV (Low-Voltage) logic devices. The eFuse OTP IP designed with 3.3V single MOS devices can reduce a total process cost of three masks which are the gate oxide mask of a 1.8V LV device and the LDD implant masks of NMOS and PMOS. And since the 1.8V voltage regulator circuit is not required, the size of the illuminance sensor chip can be reduced. In addition, in order to reduce the number of package pins of the illumination sensor chip, the VPGM voltage, which is a program voltage, is applied through the VPGM pad during wafer test, and the VDD voltage is applied through the PMOS power switching circuit after packaging, so that the number of package pins can be reduced.