• Title/Summary/Keyword: fraction measurement division

Search Result 65, Processing Time 0.029 seconds

Construction of a Student-Generated Algorithm for Fraction Measurement Division (분수나눗셈을 해결하기 위한 학생들의 자기-생성 알고리듬 구성에 관한 연구)

  • Shin, Jae-Hong
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.439-454
    • /
    • 2010
  • This study presents how two eighth grade students generated their own algorithms in the context of fraction measurement division situations by modifications of unit-segmenting schemes. Teaching experiment was adopted as a research methodology and part of data from a year-long teaching experiment were used for this report. The present study indicates that the two participating students' construction of reciprocal relationship between the referent whole [one] and the divisor by using their unit- segmenting schemes and its strategic use finally led the students to establish an algorithm for fraction measurement division problems, which was on par with the traditional invert-and-multi- ply algorithm for fraction division. The results of the study imply that teachers' instruction based on understanding student-generated algorithms needs to be accounted as one of the crucial characteristics of good mathematics teaching.

  • PDF

A Study on Operations with Fractions Through Analogy (유추를 통한 분수 연산에 관한 연구)

  • Kim Yong Tae;Shin Bong Sook;Choi Dae Uk;Lee Soon Hee
    • Communications of Mathematical Education
    • /
    • v.19 no.4 s.24
    • /
    • pp.715-731
    • /
    • 2005
  • There are five contexts of division algorithm of fractions such as measurement division, determination of a unit rate, reduction of the quantities in the same measure, division as the inverse of multiplication and analogy with multiplication algorithm of fractions. The division algorithm, however, should be taught by 'dividing by using reciprocals' via 'measurement division' because dividing a fraction by a fraction results in 'multiplying the dividend by the reciprocal of the divisor'. If a fraction is divided by a large fraction, then we can teach the division algorithm of fractions by analogy with 'dividing by using reciprocals'. To achieve the teaching-learning methods above in elementary school, it is essential for children to use the maniplatives. As Piaget has suggested, Cuisenaire color rods is the most efficient maniplative for teaching fractions. The instruction, therefore, of division algorithm of fractions should be focused on 'dividing by using reciprocals' via 'measurement division' using Cuisenaire color rods through analogy if necessary.

  • PDF

An Analysis on Aspects of Concepts and Models of Fraction Appeared in Korea Elementary Mathematics Textbook (한국의 초등수학 교과서에 나타나는 분수의 개념과 모델의 양상 분석)

  • Kang, Heung Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.431-455
    • /
    • 2013
  • In this thesis, I classified various meanings of fraction into two categories, i.e concept(rate, operator, division) and model(whole-part, measurement, allotment), and surveyed appearances which is shown in Korea elementary mathematics textbook. Based on this results, I derived several implications on learning-teaching of fraction in elementary education. Firstly, we have to pursuit a unified formation of fraction concept through a complementary advantage of various concepts and models Secondly, by clarifying the time which concepts and models of fraction are imported, we have to overcome a ambiguity or tacit usage of that. Thirdly, the present Korea's textbook need to be improved in usage of measurement model. It must be defined more explicitly and must be used in explanation of multiplication and division algorithm of fraction.

  • PDF

A Study on Understanding of Fraction Division of Elementary Mathematical Gifted Students (초등수학영재의 분수 나눗셈의 이해에 관한 연구)

  • Kim, Young A;Kim, Dong Hwa;Noh, Ji Hwa
    • East Asian mathematical journal
    • /
    • v.32 no.4
    • /
    • pp.565-587
    • /
    • 2016
  • The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.

Justifying the Fraction Division Algorithm in Mathematics of the Elementary School (초등학교 수학에서 분수 나눗셈의 알고리즘 정당화하기)

  • Park, Jungkyu;Lee, Kwangho;Sung, Chang-geun
    • Education of Primary School Mathematics
    • /
    • v.22 no.2
    • /
    • pp.113-127
    • /
    • 2019
  • The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.

A Study on a Definition regarding the Division and Partition of Fraction in Elementary Mathematics (초등수학에서 분수 나눗셈의 포함제와 등분제의 정의에 관한 교육적 고찰)

  • Kang, Heung Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.2
    • /
    • pp.319-339
    • /
    • 2014
  • Recently, the discussion about division and partition of fraction increases in Korea's national curriculum documents. There are varieties of assertions arranging from the opinion that both interpretations are unintelligible to the opinion that both interpretations are intelligible. In this paper, we investigated a possibility that division and partition interpretation of fraction become valid. As a result, it is appeared that division and partition interpretation of fraction can be defined reasonably through expansion of interpretation of natural number. Besides, division and partition interpretation of fraction can be work in activity, such as constructing equation from sentence problem, or such as proving algorithm of fraction division.

  • PDF

An Analysis of Operation Sense in Division of Fraction Based on Case Study (사례 연구를 통한 분수 나눈셈의 연산 감각 분석)

  • Pang, Jeong-Suk;Lee, Ji-Young
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.71-91
    • /
    • 2009
  • The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.

  • PDF

Quotitive Division and Invert and Multiply Algorithm for Fraction Division (분수 포함제와 제수의 역수 곱하기 알고리즘의 연결성)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.521-539
    • /
    • 2016
  • The structures of partitive and quotitive division of fractions are dealt with differently, and this led to using partitive division context for helping develop invert-multiply algorithm and quotitive division for common denominator algorithm. This approach is unlikely to provide children with an opportunity to develop an understanding of common structure involved in solving different types of division. In this study, I propose two approaches, measurement approach and isomorphism approach, to develop a unifying understanding of fraction division. From each of two approaches of solving quotitive division based on proportional reasoning, I discuss an idea of constructing a measure space, unit of which is a quantity of divisor, and another idea of constructing an isomorphic relationship between the measure spaces of dividend and divisor. These ideas support invert-multiply algorithm for quotitive as well as partitive division and bring proportional reasoning into the context of fraction division. I also discuss some curriculum issues regarding fraction division and proportion in order to promote the proposed unifying understanding of partitive and quotitive division of fractions.

A proposal to the construction of textbook contents of fraction division connected to problem context (문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안)

  • Shin, Joonsik
    • The Mathematical Education
    • /
    • v.52 no.2
    • /
    • pp.217-230
    • /
    • 2013
  • This study attempts to propose the construction of textbook contents of fraction division and to suggest a method to strengthen the connection among problem context, manipulation activities and symbols by proposing an algorithm of dividing fractions based on problem contexts. As showing the suitable algorithm to problem context, it is able to understand meaningfully that the algorithm of fractions division is that of multiplication of a reciprocal. It also shows how to deal with remainder in the division of fractions. The results of this study are expected to make a meaningful contribution to textbook development for primary students.

An Analysis on the Pre-service Teachers' Knowledge about Elementary Students' Problem Solving Strategies for Fraction Division (초등학생들의 분수 나눗셈 문제해결 방법에 대한 예비교사들의 지식 분석)

  • Lee, Dae hyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.2
    • /
    • pp.203-222
    • /
    • 2020
  • Because the role of the teacher is important for the education to actualize the goals of the curriculum, the interest about the teacher's knowledges has been addressed as an important research topic. Among them, the pedagogical content knowledge is the knowledge that can emphasize the professionalism of the teacher. In this study, I analyzed the elementary pre-service teachers' the problem solving strategies that they imagined the methods that elementary school students can think about fraction division. Pre-service teachers who participated in this study were completed all of the mathematics education courses in the pre-service teachers' education courses. The research was conducted using the four type-problems of fraction division. The results showed that elementary pre-service teachers responded in the order of equal sharing problem-measurement division-partitive division-context of determination of a unit rate problem. They presented significant responses not only with typical algorithms but also with pictures or expressions. On the basis of this research, we have to take an interest in the necessity of sharing and recognizing various methods of fraction division in pre-service teachers education.