• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.039 seconds

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Characteristics of Leakage Flow on Regenerative Blower and Leakage-reducing Design for Performance Enhancement (재생형 블로워의 누설유동 특성과 누설유량 저감을 통한 성능 향상)

  • Choi, Min-Ho;Kim, Young-Hoon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • Regenerative blower is suitable for hydrogen recirculation in fuel cell vehicle due to its capability of high pressure rise in single stage. Numerical models were applied to investigate inner gap leakage flow characteristics. A leakage flow in the inner gap is dominantly affected by pressure gradient. Therefore a blower with concentric channel type was suggested as one of modified models for reducing the inner gap pressure gradient. Also numerical results such as pressure rise, efficiency, leakage flow rate and torque were compared between modified and reference models. The performance of concentric channel type was improved as a result of reduced leakage flow.

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Numerical Prediction of Turbulent Heat Transfer to Low Prandtl Bumber fluid Flow through Rod Bundles

  • Chung, Bum-Jin;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • The turbulent heat transfer to low Prandtl number fluid flow through rod bundles is analyzed using k-$\varepsilon$ two-equation model. For the prediction of the turbulent flow field, an anisotropic eddy viscosity model is used. In the analysis of the temperature field, the effects of various parameters such as geometry, Reynolds and Prandtl numbers are considered. The calculation in made for Prandtl numbers from 0.001 to 0.1 in order to analyze the heat transfer to low Prandtl number fluid such as liquid metals. The numerical results show that for small P/D (Pitch/Diameter) geometries low Prandtl number makes severe changes of the rod surface temperature.

  • PDF

Analysis of natural frequencies of delaminated composite beams based on finite element method

  • Krawczuk, M.;Ostachowicz, W.;Zak, A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.243-255
    • /
    • 1996
  • This paper presents a model of a layered, delaminated composite beam. The beam is modelled by beam finite elements, and the delamination is modelled by additional boundary conditions. In the present study, the laminated beam contains only one delaminated region through the thickness direction which extends to the full width of the beam. It is also assumed that the delamination is open. The influence of the delamination length and position upon changes in the bending natural frequencies of the composite laminated cantilever beam is investigated.

A STUDY ON AN INTERFACE CAPTURING METHOD APPLICABLE TO UNSTRUCTURED MESHES FOR THE ANALYSIS OF FREE SURFACE FLOW (자유표면유동 해석을 위한 비정렬격자계에 적합한 경계면포착법 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.14-19
    • /
    • 2006
  • A conservative finite-volume method for computing 3-D flow with an unstructured cell-centered method has been extended to free surface flows or two-fluid systems with topologically complex interfaces. It is accomplished by implementing the high resolution method(CICSAM) by Ubbink(1997) for the accurate capturing of fluid interfaces on unstructured meshes, which is based on the finite-volume technique and is fully conservative. The calculated results with the present method are compared to show the ease and accuracy with available numerical and experimental results reported in the literature.

The Volume Resistivity Characteristics on Fluid Flow of Ultra-High Voltage Transformer Oils added BTA (BTA를 첨가한 초고압변압기유의 유동시 체적고유저항특성)

  • Lee, Yong-Woo;Lee, Soo-Won;Shin, Hyun-Taek;Han, Sang-Sub;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.267-269
    • /
    • 1997
  • The electrical properties due to the Benzotriazole(following as BTA) additive in fluids for insulating and cooling the ultra-high voltage transformer is studied in this paper. Specimen having the several contents of BTA, such as 5[ppm]. 10[ppm] and 30[ppm] is used in order to investigate the characteristics on volume resistivity in case of fluid flow in experimental device made in lab. Volume resistivity is decreased with an increase of fluid flow velocity and increased with BTA content in low temperature region, but volume resistivity of specimen contained BTA 10[ppm] is the largest thing over $30[^{\circ}C]{\sim}50[^{\circ}C]$ than the others in experiment.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF