• Title/Summary/Keyword: extensions

Search Result 843, Processing Time 0.027 seconds

SEMIBRICKS OVER SPLIT-BY-NILPOTENT EXTENSIONS

  • Gao, Hanpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.183-193
    • /
    • 2021
  • In this paper, we prove that there is a bijection between the ��-tilting modules and the sincere left finite semibricks. We also construct (sincere) semibricks over split-by-nilpotent extensions. More precisely, let �� be a split-by-nilpotent extension of a finite-dimensional algebra �� by a nilpotent bimodule ��E��, and �� ⊆ mod ��. We prove that �� ⊗�� �� is a (sincere) semibrick in mod �� if and only if �� is a semibrick in mod �� and Hom��(��, �� ⊗�� E) = 0 (and �� ∪ �� ⊗�� E is sincere). As an application, we can construct ��-tilting modules and support ��-tilting modules over ��-tilting finite cluster-tilted algebras.

RESTRICTED POLYNOMIAL EXTENSIONS

  • Myung, No-Ho;Oh, Sei-Qwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.865-876
    • /
    • 2021
  • Let 𝔽 be a commutative ring. A restricted skew polynomial extension over 𝔽 is a class of iterated skew polynomial 𝔽-algebras which include well-known quantized algebras such as the quantum algebra Uq(𝔰𝔩2), Weyl algebra, etc. Here we obtain a necessary and sufficient condition in order to be restricted skew polynomial extensions over 𝔽. We also introduce a restricted Poisson polynomial extension which is a class of iterated Poisson polynomial algebras and observe that a restricted Poisson polynomial extension appears as semiclassical limits of restricted skew polynomial extensions. Moreover, we obtain usual as well as unusual quantized algebras of the same Poisson algebra as applications.

FUZZY TRANSLATIONS AND FUZZY MULTIPLICATIONS OF BCK/BCI-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae;Doh, Myung-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.353-360
    • /
    • 2009
  • Fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras are discussed. Relations among fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications are investigated.

Comparative Analysis of Spectral Theory of Second Order Difference and Differential Operators with Unbounded Odd Coefficient

  • Nyamwala, Fredrick Oluoch;Ambogo, David Otieno;Ngala, Joyce Mukhwana
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.297-305
    • /
    • 2020
  • We show that selfadjoint operator extensions of minimal second order difference operators have only discrete spectrum when the odd order coefficient is unbounded but grows or decays according to specific conditions. Selfadjoint operator extensions of minimal differential operator under similar growth and decay conditions on the coefficients have a absolutely continuous spectrum of multiplicity one.

Some Properties of Alexandrov Topologies

  • Kim, Yong Chan;Kim, Young Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • Alexandrov topologies are the topologies induced by relations. This paper addresses the properties of Alexandrov topologies as the extensions of strong topologies and strong cotopologies in complete residuated lattices. With the concepts of Zhang's completeness, the notions are discussed as extensions of interior and closure operators in a sense as Pawlak's the rough set theory. It is shown that interior operators are meet preserving maps and closure operators are join preserving maps in the perspective of Zhang's definition.

GENERALIZED VECTOR-VALUED VARIATIONAL INEQUALITIES AND FUZZY EXTENSIONS

  • Lee, Byung-Soo;Lee, Gue-Myung;Kim, Do-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.609-624
    • /
    • 1996
  • Recently, Giannessi [9] firstly introduced the vector-valued variational inequalities in a real Euclidean space. Later Chen et al. [5] intensively discussed vector-valued variational inequalities and vector-valued quasi variationl inequalities in Banach spaces. They [4-8] proved some existence theorems for the solutions of vector-valued variational inequalities and vector-valued quasi-variational inequalities. Lee et al. [14] established the existence theorem for the solutions of vector-valued variational inequalities for multifunctions in reflexive Banach spaces.

  • PDF

EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES TO CONDITIONAL CASES

  • Yuan, De-Mei;Li, Shun-Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.431-445
    • /
    • 2015
  • Extensions of the Kolmogorov convergence criterion and the Marcinkiewicz-Zygmund inequalities from independent random variables to conditional independent ones are derived. As their applications, a conditional version of the Marcinkiewicz-Zygmund strong law of large numbers and a result on convergence in $L^p$ for conditionally independent and conditionally identically distributed random variables are established, respectively.

CLASS-PRESERVING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS OF BAUMSLAG-SOLITAR GROUPS

  • Kim, Goansu;Zhou, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1033-1041
    • /
    • 2016
  • We show that, for any non-zero integers ${\lambda}$, ${\mu}$, ${\nu}$, ${\xi}$, class-preserving automorphisms of the group $$G({\lambda},{\mu},{\nu},{\xi})={\langle}a,b,t:b^{-1}a^{\lambda}b=a^{\mu},t^{-1}a^{\nu}t=b^{\xi}{\rangle}$$ are all inner. Hence, by using Grossman's result, the outer automorphism group of $G({\lambda},{\pm}{\lambda},{\nu},{\xi})$ is residually finite.

ANALYTIC EXTENSIONS OF M-HYPONORMAL OPERATORS

  • MECHERI, SALAH;ZUO, FEI
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.233-246
    • /
    • 2016
  • In this paper, we introduce the class of analytic extensions of M-hyponormal operators and we study various properties of this class. We also use a special Sobolev space to show that every analytic extension of an M-hyponormal operator T is subscalar of order 2k + 2. Finally we obtain that an analytic extension of an M-hyponormal operator satisfies Weyl's theorem.

On the goodness of some types of fuzzy paracompactness in Sostak's fuzzy topology

  • Kim, Yong-Chan;Abbas, S.E.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • We introduce in Sostak's fuzzy topological spaces definitions of paracompactness, almost paracompactness, and near paracompactness all of which turn to be good extensions of their classical topological counterparts. Fuzzy semi-paracompact, para S-closed and weakly paracompact spaces are treated to a similar approach.