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Abstract

We introduce in Sostak’s fuzzy topological spaces

definitions

of paracompactness, almost paracompactness, and near

paracompactness all of which turn to be good extensions of their classical topological counterparts. Fuzzy serm-paracompact para
S-closed and weakly paracompact spaces are treated to a similar approach.
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1. Introduction and Preliminaries

Sostak [16], introduced the fundamental concept of a fuzzy
topological structure, as an extension of both crisp topology
and fuzzy topology [3], in the sense that not only the objects
are fuzzified, but also the axiomatics. In [17,18] Sostak gave
some rules and showed how such an extension can be
realized. Chattopadhyay et. al have redefined the same concept
[4,5]. In [12,7], Ramadan and his colleagues gave a similar
definition, namely "smooth topological space" for lattice
[=[0,1]. It has been developed in many directions
[8,10,17,18]. In [9], Hoehle and Sostak introduce the concept
of an [L-fuzzy topologies and establish their corresponding
convergence theory for any lattice L. Paracompactness is one
of the most important notions in topology. Since fuzzy
topological spaces were introduced in [16,9], two papers on
this problem have been written and a lot of different kinds of
fuzzy paracompactness have been introduced and studied
[14,15].

The aim of this paper is to introduce some good types of
paracompactness in fuzzy topological spaces in view of the
definition of Sostak, namely, paracompactness, almost
paracompactness, near paracompactness, weak paracompactness
and para S-closedness.

2. Preliminaries

In this paper, let X be a nonempty set, 7=[0,1],
I=[0,1], I=[0,1] and IX the family of all fuzzy subsets
of X. For ecl, a(x)=a for all x=X. For a subset A of
X, X a is a characteristic function of A.

A fuzzy topology (in the sense of Sostak) is a map
zI*—>] such that
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©1) (D=«0)=1.

02) f(ANW2 AN ).

(03) oV jertt P2 ieplpe ).

The pair (X, 7) is called a fuzzy topological space (fts, for
short).

Let (X,? be a fts. The mapping F ;I*—I defined by
the equality F (#)=op"),Veel® is called a fuzzy
cotopology satisfying the following properties:

E) FLD=F(0)=1.

®2) F(AVW)2F (DNF ().

F3) F AN et D2 erF Lu ).

Let (X, 7) be a fts. and A=I*. The smooth closure
(resp. smooth interior) of A=I?¥, denoted by cl( A) (resp. int
( A)), is defined by

cl( D= AT XF (>0, <4}
(resp. int( )=\ {peI¥(1)>0, p<AN6].

For a fts (X, 7) and A,u=IX. Then,
(@) If A<p, then cl(A) < cl( p),
(i) i A<y, then int( A) < int( ),
(iii) ¢l (A)*=int( A*) and int () *=cl( 1*)
Gv) If (A)>0, then A=int(A),
W) If F (A)>0, then A=cl( A) [6).
For a fts (X, 1),
(1) AelX is fuzzy semi-open iff there exists p=]%X with
)y a,Vasl| such that p<i< cl ()
(2) AeI¥ is fuzzy regular open iff A=int(cl( A)).
(3) Ael¥ is fuzzy regular closed iff A=cl(int( A)).

3. Lower semi-continuous

In this section, we introduce the concept of a-lower
semi-continuity (e=l) in order to set up a "goodness of
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extension" criterion for fuzzy topological properties.

Definition 3.1 Let (X, 7) be an ordinary topological space
and e=l. A mapping A (X, T)—I where [ has its usual
topology, is said to be a-lower semi-continuous if and only if
for every t=I; with a>t, A ~'(¢,1]e T. It is clear that if
A is lower semi-continuous, then A is
semi-continuous for every a=I. Moreover, A
semi-continuous iff A is lower semi-continuous.
Naturally, every mapping from (X, to [ is O-Lower
semi-continuous.

a-lower
is 1-lower

Definition 3.2[1,13]. Let
space. Then

(1) The mapping W 7):1*—I defined by
WTHAD) =\ {acI ]2 "Na,1]le T}

for every Ael”, is fuzzy topology on X.

(2) The mapping W T ):1*—I defined by
WMT X D=V {esI|a (e,11=T }

for every Ael”, is fuzzy cotopology on X.

(X,7) be an ordinary topological

This provides a "goodness of extension" criterion for fuzzy
topological properties. Recall that a fuzzy extension of a
topological property of (X, 7) is said to be good when it is
possessed by W T) iff the original property is possessed by
T.

Proposition 3.3. For every fuzzy set A (X, 7)—1, and for all
tel,,

cl ()

M <@ Ut 1DS D) [t 1]
int(A) “Yt, 11 int(A "1, 1D

1(t,11€ cl (4 (L, 1D

() < int(x 1t 1D Cint(D)) [t 1].

all closures and interiors being taken in T or WT) as
appropriate.
Proof. (i) We are going to prove that any closed set C in
(X, 1) with A “Y(#,1]< C satisfies

(cl(A) "Ht,11€C. Now let A (s,1]lcC ,
closed in (X, 7) and let s X—I defined by

C is

1, x=C,
w(x) =
t, x¢C.

Then, Vs&I;, we have

X, s<t,
e s, 1=

C, st
So, £ '[s,1] is closed set in (X, T), Vs€I, then p*
Hence WD) (pg*)=1 and
WMT )()=1. We also have that A<y.
Hence cl(A)<g. Thus ( cl(A))(x)>t implies w(x)> ¢ and

is lower semi-continuous.

x=C it follows that

(cl(A) ~Ut,11S el (A "1, 1),
Clearly,

ATHETIE (W) it 1S (el (A) Tt 10,
since A< cl(4). And by lower semi-continuity
( cl(A)) ~'t,1] is closed in T. Thus

(A7, 1IDE (el () 7N, 10
So,

el (A 7HE, IDE el (AT, IDE (el (D) Tt 10,

(ii) Similarly, for interiors clearly

(intQ) ~}t, 104 "M, 11s 4 Tt 1.
int(A)) “4t,11=T, so
(int(A) “Xt,11€ int(A 7', 1D € int(A ¢, 1D).
CSA ¢ 1], where C is open in T,
Defining p=7¥ by

And

Secondly, let

t, x=C,
u(x)=
0 x¢C,
then, Vsl
¢, s<t,
e s, 1=
C, st

Then, u ~}s, 11T, Vs€I, so, WMTH (=1 and g<Aa.
So, p< int(A). Hence x=C so int(A))(x)=t and therefore
int(A 7t, 1)< ( int(A)) 't 1].

Corollary 3.4. For a regular open fuzzy set u=IX of W T)
and (€1,

int(cl(x " [£1D)= int(x ~'[t,1D)
This latter set is therefore regular open.

Proof. By Proposition 3.3,

int(cl(x 7't 1D E int((cl(w) ~t,1]

< int(cl(w)) "t 1]=p t,1],

since int(cl()) = . But for any set A,
int(A)E int(cl(A)), and if int(cl(A))SA, then
int(cl(A))S int(A), so int(cl(A))= int(A) Thus

int(cl(x ~t, 1) = int(z ~'[t,1]) But the interior of the

closure of a set is always regular, so int(z ~!'[t,1]) is

regular open.

Corollary 3.5. () @ o= cl(a,)
(ii) @ inca)= int(@,)
Proof. Since AS cl(A), we have @ 4<a ,(a). But
a, x= cl(A),
a2 q@a=
0, x= cl(A),

then Vil
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¢, (=a,
(a’ cl(A)) _I[fyl]:
cl(A), tla.
So, (@ gy “It1leT,, Viel,, $0

WMT e qap=De.
taking A= 4 in Proposition 3.3, Vil
(cl(a ) "4t 11s cl(a ' (L IDE Celle ) "1t 11.
Take #< 2. Then

cl(A)= cl(ez!(t,1Ds (cl(a ) 71,1l
so, cl(aa)(textcl(A))=t for all t=[0, ) Thus

c(a p)(cl(A)=a
and @ 4= cl(@a).Hence @ aa= cl(@4) as required.
We do not repeat the dual argument for interiors.

Hence cd{aa)<e 4. Now

Corollary 3.6. If A is fuzzy semiopen in W 7T) and (< a,
then A ~!(z,1] is semiopen in 7.
Proof. For A semiopen in W 7), there exists pel* with
WMD(w>a VasIi, ta such that p<A< cl(z), Hence
u Nt 11eT and

u N1 A TN 1S Cel (p) 7 H(E, 1]

< el "1t 1D).
So, 4 ~(z1] is semiopen.
Proposition 3.7 With the same notation for X, W 7) and
aa:
(i) If a set A is semiopen in 7, then @, is fuzzy
semiopen in W T).
(ii) If a set A is regular open in 7, then @4 is fuzzy
regular open in W 7).

Proof. (i) f A is semiopen, then there exist G T with
GSAC cl(G). Then
a¢S@a<a g~ cllag)
And WTXe p)>a, so @, is semiopen.
(ii)) Let A= int(cl(A)). Then @Aa= in(aca), SO

@ =@ jpaan= int(cl{a ) and @4 is regular.

4. Proposed definitions and its goodness

Definition 4.1. Let (X, 7r) be a fts. A family of fuzzy sets
(A, 1 i€l} is said to be locally finite iff for each xeX,
there exists pelX with {x)>e and w(x)>e VasIiand
such that 4 /Ax#=0 holds for but at most finitly many s=TI"

Definition 4.2. In an fts with families U and V of fuzzy
sets, U is a refinement of V, written U<V, iff for each

pus U there is an A= V such that u<A.

Definition 4.3. (a) An fts (X, ) is called fuzzy paracompact
iff for each pCI*with «{(A)>e,VAep and @<I; such that
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NAZY and for all e with 0<e<a,
there exists a locally finite refinement £ of B
with o(px)>ae, VuSBy and @=I; such that
#\4% uza— €

(b) An fts (X, o) is called fuzzy almost paracompact iff for

each AcC/* with {A)>e,VAeB and @<I; such that
NAZ@ and for all e with 0¢e<a,

there exists a locally finite refinement 8¢ of A
with o(u)>e, YuEBy and @<, such that
V c(w=a—e
Huef, .

(c) An fts (X, p)is called fuzzy near paracompact iff for each

BCTX with (A)>a,VAcp and @€I| such that =9

and for all e with (<e<e,

there exists a locally finite refinement £, of 8
with (p)>e, V#€By and @=I; such that
Ll\g//gﬂintcl(u)Za—e.

(d) An fts
each BCI¥ of fuzzy semiopen sets and each @=/7, such that

(X, 1) is called fuzzy semi-paracompact iff for

A\E/ﬁ’iza and for all ¢ with (0<e<e,
there exists a locally finite semiopen refinement

By of S such that ,J\e/,euﬂza_e.

(e) An fts (X, ) is called fuzzy para S-closed iff

for each ACI¥ of fuzzy semiopen sets and each @€/ such

that A\c{ﬂ’iza and for all & with (0<e<a,

there exists a locally finite semiopen refinement

By of A such that ”\E/ﬂocl(#)Za/—e.

(f) An fts (X, 1) is called fuzzy weakly paracompact iff for

each BC/¥of fuzzy regular open sets and each @</, such

that A\Z,g’iza and for all & with (<z<a,

there exists a locally finite regular open refinement £y of 8
V. oc(p)=a—e

“eBy

such that

In the crisp case of r this definitions coincides with

Definition 3[2].

Theorem 4.4. (X, W T)) is fuzzy paracompact iff (X, T)
is paracompact. Thus fuzzy paracompactness is a good
extension of paracompactness.

Proof. Suppose (X, 7) is paracompact. Let BCIX with
WMTAD>a VAiep, @< be such that ,1\!,5’12” Now let
0<e<a. We shall show that there exists a locally finite

refinement By of A such that

V Aza—¢

A€ 8,

Take ¢ such that a—e{Ka . Then from W T)(A)> o we

have A Yo, 1le T, Viep, and R
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U={a
there exist

Y,1] | A=p} is an open cover of X. Otherwise
x=X such that, for all Aep, AMx)<ola

contradicting the fact that /1\(/3/]2(2

So, there exists a locally finite open refinement
which is also cover X. Now consider the family

Bo={o,| v& V}CI* such that

WMTXo,>a Vo, 8
To show that B is locally finite, take x<=X. Since V is
locally finite there exists an open neighbourhood # of «x in
T such that #Nv=4¢ for all but at most finitely many
ve V. Then, the characteristic function of every open set is
1-lower WMTXx,)=1>a with
2. 0)=1 and ¢, \x,=0 holds for all but at most finitely

Vof U

a=l,

semi-continuous, SO

many ¢ ,E 8. To show that B is a refinement of B, take
0,£8;. Then pe V and there exists some p=pg such that

Y(4,1]. Hence 0 ,<u. Finally, E,\/d."vZa—E

otherwise there exists some x=X such that

vEp

V o (0)<a—e&o
a8,

for all 0,8, ie., 0. x)=0, Therefore x&y for all y=V
, contradicting the covering property of V.
Conversely, let (X, W{ T))be fuzzy paracompact, and let ¥

be an open cover of X in 7. Then, B8=(x,) .. o IX with

WMTHx )=1>a, Vx,&8 and @I, such that
4\/(/7( w=lza
Choose ¢ such that 0<e&{a. By hypothesis there exists a
locally finite refinement By of A such that
W (p)>a, VueseB, with ,M'#zaf—e

Now take ¢ such that (<#a—e¢, and consider the family
V={x Nt,11| #€B,} of open sets in T.

We show that V is locally finite open refinement of {/ and
covers X. Certainly V covers X, since taking x=X and
observing that \/u(x)=a- ¢

implies that there exists #,=8, such that #o(X)>? ie,
x€p,'(¢,11€ V. Now let xcX and observe that there
vel¥ with W T)(v)>e such that
pAv=( for all but at most finitely many #€8,. Then

exists Ax)>a and

v W41le T with xev Y1) and
u 610Ny (t,1]1=¢ for all but ai most finitely many
#E By, Finally, V is a refinement of U. Let p (¢, 1le V.
Then, #=8; and 3JusU such that #<x, So

# W#,1]€u Thus (X, 7) is paracompact.

This proof provides the model, and the notation, for the
following theorems. We indicate only the details where
differences occur.

Theorem 4.5. (X, W T)) is fuzzy almost paracompact iff
(X, T) is almost paracompact. Thus almost paracompactness

is good.

Proof. The locally finite open refinement V of U is such
that U ,evcl(v)=X. Then By={0,|veEV} with
WMo ol Vo, €8, asl, and  locally finite

refinement of p. Also, }./Vd(“v)za’e, since letting
xeX, veV such that xe cl(v). And by
Corollary 3.5(1), 0 am(x)= cl(o Xx)=0>a—¢

Conversely, assuming (X, W{ 7)) to be almost paracompact

there exists

we obtain a locally finite refinement B, of g such that
WMIN>a, VusBowih N, OH=aTe

V={p Nt1]1 | =By}
is an open locally finite refinement of {J. And
U ne B Cl(.u l(t, 1])=X

Again

\/W{ cd(w(x)}za—¢

To see this, let x=X. Then since .z
1oEBy cl(u 0)(X)>t, SO

xe( cl(pg)) "N, 11€ el (e '(t,1D). This completes the
proof.

there  exists such that

Theorem 4.6. (X, W(7)) is fuzzy nearly paracompact iff
(X, T) is nearly paracompact. So near paracompactness is
good.

Proof. In this case U . yint(cl(v))=X, and By is an
open locally finite Also

\/Vint(cl(av))za— &
This follows by noting that for any x< X, there exists vV
such that xe int(cl(v)). And
O inaen(@ = int(cl(c N x)=0>a—¢

Conversely, u\c/ﬁl. int(cl(w)za—e

And U e, int(cl(z "t,1)=X. Here, taking r=X,
int(cl{z N>t | so

refinement of B.

there exists # =8 such that
(t, 1]
It 1)

xe int(cl(g ) "M, 1€ int((cl(z )
< int(cl( g

by Proposition 3.3.

Theorem 4.7. Fuzzy semi-paracompactness is good.
Proof. An obvious adaptation of the next theorem.

Theorem 4.8. (X, W T)) is fuzzy para S-closed iff (X, 7)
is para S-closed. This property is therefore good.
Proof. Supposing (X, 7) to be para S-closed, let B be a

family of fuzzy semiopen sets in W(7T) with ,1\/,3'12“. This
time we get, as in Theorem 4.5, a locally finite refinement of
U with U, ycl(v)=X And U, V are semiopen, using
Corollary 3.6. Then follow verbatim Theorem 4.5, substituting
semiopen for WM TH)(A)> e, Viep.

Theorem 4.9. (X, WM(T)) is fuzzy weakly paracompact iff
(X, T) is weakly paracompact. So weak paracompactness is
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a good extension.

Proof. Assume (X, 7) weakly paracompact, and A a family
of fuzzy regular open sets. Then { int(A ~![t,1]) | A=} is
a regular open cover of X (Corollary 3.4). The covering
property follows from that of A ~!(z, 1] which is an open set
contained in A ~1[# 1] and therefore in its interior. Continue
as usual to yield a family Bo= {0, | v=V} of locally finite

fuzzy regular open sets with ,,\E/ Vcl(av)Za—s Also, given
ve V, there exists A</ such that

v< int(A Ut 1)s A "1t 1]
So A(w)=[t1] and 0 ,<A, Thus By is a refinement of 4,
For the converse take V={int(xz ~'[t,1] | #=8(} a family
of regular open sets in 7. Now g ~'(t,11€ int{x ~'[t,1]),
X. And V refines U,
int(z ~'[t,1]) we know £E8,, so there exists we& U with
#/\x ,=0. Hence

int(e "t IDS ¢ Tt 11S .
Local finiteness presents no difficulties.

so V covers since  given
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