DOI QR코드

DOI QR Code

SEMIBRICKS OVER SPLIT-BY-NILPOTENT EXTENSIONS

  • Gao, Hanpeng (Department of Mathematics Nanjing University)
  • Received : 2020.02.29
  • Accepted : 2020.07.09
  • Published : 2021.01.31

Abstract

In this paper, we prove that there is a bijection between the ��-tilting modules and the sincere left finite semibricks. We also construct (sincere) semibricks over split-by-nilpotent extensions. More precisely, let �� be a split-by-nilpotent extension of a finite-dimensional algebra �� by a nilpotent bimodule ��E��, and �� ⊆ mod ��. We prove that �� ⊗�� �� is a (sincere) semibrick in mod �� if and only if �� is a semibrick in mod �� and Hom��(��, �� ⊗�� E) = 0 (and �� ∪ �� ⊗�� E is sincere). As an application, we can construct ��-tilting modules and support ��-tilting modules over ��-tilting finite cluster-tilted algebras.

Keywords

References

  1. T. Adachi, O. Iyama, and I. Reiten, τ-tilting theory, Compos. Math. 150 (2014), no. 3, 415-452. https://doi.org/10.1112/S0010437X13007422
  2. S. Asai, Semibricks, to appear in Int. Math. Res. Not. IMRN.
  3. I. Assem, T. Brustle, and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151-162. https://doi.org/10.1112/blms/bdm107
  4. I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), no. 5, 1547-1555. https://doi.org/10.1080/00927879808826219
  5. I. Assem and D. Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003), no. 2, 259-275. https://doi.org/10.4064/cm98-2-10
  6. A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618. https://doi.org/10.1016/j.aim.2005.06.003
  7. A. B. Buan, R. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332. https://doi.org/10.1090/S0002-9947-06-03879-7
  8. L. Demonet, O. Iyama, and G. Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not. IMRN 2019, no. 3, 852-892. https://doi.org/10.1093/imrn/rnx135
  9. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448. https://doi.org/10.24033/bsmf.1583
  10. H. Gao and Z. Huang, Support τ-tilting modules under split-by-nilpotent extensions, Colloq. Math. 160 (2020), no. 2, 247-262. https://doi.org/10.4064/cm7774-3-2019
  11. F. Marks and J. Stovicek, Torsion classes, wide subcategories and localisations, Bull. Lond. Math. Soc. 49 (2017), no. 3, 405-416. https://doi.org/10.1112/blms.12033
  12. C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), no. 2, 269-302. https://doi.org/10.1016/0021-8693(76)90184-8
  13. R. Schiffler and K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, J. Algebra 472 (2017), 226-258. https://doi.org/10.1016/j.jalgebra.2016.10.009
  14. S. Zito, τ-tilting finite cluster-tilted algebras, arXiv:1902.05866.