DOI QR코드

DOI QR Code

RESTRICTED POLYNOMIAL EXTENSIONS

  • Myung, No-Ho (Department of Mathematics Chungnam National University) ;
  • Oh, Sei-Qwon (Department of Mathematics Chungnam National University)
  • Received : 2020.07.09
  • Accepted : 2021.05.07
  • Published : 2021.07.31

Abstract

Let 𝔽 be a commutative ring. A restricted skew polynomial extension over 𝔽 is a class of iterated skew polynomial 𝔽-algebras which include well-known quantized algebras such as the quantum algebra Uq(𝔰𝔩2), Weyl algebra, etc. Here we obtain a necessary and sufficient condition in order to be restricted skew polynomial extensions over 𝔽. We also introduce a restricted Poisson polynomial extension which is a class of iterated Poisson polynomial algebras and observe that a restricted Poisson polynomial extension appears as semiclassical limits of restricted skew polynomial extensions. Moreover, we obtain usual as well as unusual quantized algebras of the same Poisson algebra as applications.

Keywords

Acknowledgement

The second author is supported by Chungnam Nationality University Grant.

References

  1. K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhauser Verlag, Basel, 2002. https://doi.org/10.1007/978-3-0348-8205-7
  2. D. Calaque, G. Felder, and C. A. Rossi, Deformation quantization with generators and relations, J. Algebra 337 (2011), 1-12. https://doi.org/10.1016/j.jalgebra.2011.03.037
  3. A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999.
  4. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
  5. E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra, Lett. Math. Phys. 106 (2016), no. 7, 997-1009. https://doi.org/10.1007/s11005-016-0856-4
  6. K. R. Goodearl, Semiclassical limits of quantized coordinate rings, in Advances in ring theory, 165-204, Trends Math, Birkhauser/Springer Basel AG, Basel, 2010. https://doi.org/10.1007/978-3-0346-0286-0_12
  7. K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, second edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511841699
  8. T. Ito, P. Terwilliger, and C. Weng, The quantum algebra Uq(sl2) and its equitable presentation, J. Algebra 298 (2006), no. 1, 284-301. https://doi.org/10.1016/j.jalgebra.2005.07.038
  9. N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York, 1962.
  10. D. A. Jordan, Finite-dimensional simple Poisson modules, Algebr. Represent. Theory 13 (2010), no. 1, 79-101. https://doi.org/10.1007/s10468-008-9104-7
  11. D. A. Jordan and S.-Q. Oh, Poisson brackets and Poisson spectra in polynomial algebras, in New trends in noncommutative algebra, 169-187, Contemp. Math., 562, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/conm/562/11136
  12. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf
  13. K. R. Meyer, G. R. Hall, and D. Offin, Introduction to Hamiltonian dynamical systems and the N-body problem, second edition, Applied Mathematical Sciences, 90, Springer, New York, 2009.
  14. S.-Q. Oh, Poisson polynomial rings, Comm. Algebra 34 (2006), no. 4, 1265-1277. https://doi.org/10.1080/00927870500454463