• 제목/요약/키워드: existence solution

검색결과 944건 처리시간 0.028초

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • Rasouli, S.H.
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.557-564
    • /
    • 2012
  • This study concerns the existence of positive solution for the following nonlinear system $$\{-div(|x|^{-ap}|{\nabla}u|^{p-2}{\nabla}u)=|x|^{-(a+1)p+c_1}({\alpha}_1f(v)+{\beta}_1h(u)),x{\in}{\Omega},\\-div(|x|^{-bq}|{\nabla}v|q^{-2}{\nabla}v)=|x|^{-(b+1)q+c_2}({\alpha}_2g(u)+{\beta}_2k(v)),x{\in}{\Omega},\\u=v=0,x{\in}{\partial}{\Omega}$$, where ${\Omega}$ is a bounded smooth domain of $\mathbb{R}^N$ with $0{\in}{\Omega}$, 1 < $p,q$ < N, $0{{\leq}}a<\frac{N-p}{p}$, $0{{\leq}}b<\frac{N-q}{q}$ and $c_1$, $c_2$, ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ are positive parameters. Here $f,g,h,k$ : $[0,{\infty}){\rightarrow}[0,{\infty})$ are nondecresing continuous functions and $$\lim_{s{\rightarrow}{\infty}}\frac{f(Ag(s)^{\frac{1}{q-1}})}{s^{p-1}}=0$$ for every A > 0. We discuss the existence of positive solution when $f,g,h$ and $k$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

Stabilizing Solutions of Algebraic Matrix riccati Equations in TEX>$H_\infty$ Control Problems

  • Kano, Hiroyuki;Nishimura, Toshimitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.364-368
    • /
    • 1994
  • Algebraic matrix Riccati equations of the form, FP+PF$^{T}$ -PRP+Q=0. are analyzed with reference to the stability of closed-loop system F-PR. Here F, R and Q are n * n real matrices with R=R$^{T}$ and Q=Q$^{T}$ .geq.0 (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with R .geq. 0. and also in the solutions of in H$_{\infty}$ control problems with R taking the form R=H$_{1}$$^{T}$ H$_{1}$-H$_{2}$$^{T}$ H$_{2}$. In both cases an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem. First, we briefly review the typical results when R is of definite form, namely either R .geq. 0 as in LQG problems or R .leq. 0. They constitute two extrence cases of Riccati to the cases H$_{2}$=0 and H$_{1}$=0. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution. Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H$_{\infty}$ control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.x.ix.x.

  • PDF

『유클리드 원론』 I권 정리 22의 Diorism을 통해서 본 존재성 (The Diorism in Proposition I-22 of 『Euclid Elements』 and the Existence of Mathematical Objects)

  • 유미영;최영기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권3호
    • /
    • pp.367-379
    • /
    • 2015
  • 고대 그리스에서 '수학적 대상이 존재하기 위한 조건'으로 사용된 diorism을 통하여 수학적 대상의 존재성에 대하여 살펴본다. Diorism이 제시된 대표적 예인 "유클리드 원론" I권 정리 22를 중심으로 삼각형의 존재성을 "원론"이 어떻게 다루었는지에 대하여 논의한다. 정의한 대상의 존재성을 공준이나 명제로 증명하는 "원론"의 구조를 통하여 수학적 대상의 존재성은 인식가능성이고 공리체계 내에서 증명가능성임을 밝힌다. 이러한 관점에서 작도는 "원론"에서 존재성을 보증하는 주요 방법이다. 또한 diorism의 맥락에서 전개도가 다면체를 구성할 수 있음을 살펴보았다. 이러한 내용을 바탕으로 수학적 대상의 존재성에 대해 학교수학에서 시사하는 점을 논의하였다.

이산 최적 $H_{\infty}$-제어 문제의 최적해를 구하는 방법에 대한 연구 (Study on an optimum solution for discrete optimal $H_{\infty}$-control problem)

  • 하철근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.565-568
    • /
    • 1996
  • In this paper, a solution method is proposed to calculate the optimum solution to discrete optimal H$_{.inf}$ control problem for feedback of linear time-invariant system states and disturbance variable. From the results of this study, condition of existence and uniqueness of its solution is that transfer matrix of controlled variable to input variable is left invertible and has no invariant zeros on the unit circle of the z-domain as well as extra geometric conditions given in this paper. Through a numerical example, the noniterative solution method proposed in this paper is illustrated.

  • PDF

EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR SOME p(x)-LAPLACIAN-LIKE PROBLEMS VIA VARIATIONAL METHODS

  • AFROUZI, G.A.;SHOKOOH, S.;CHUNG, N.T.
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.11-24
    • /
    • 2017
  • Using variational methods, we study the existence and multiplicity of weak solutions for some p(x)-Laplacian-like problems. First, without assuming any asymptotic condition neither at zero nor at infinity, we prove the existence of a non-zero solution for our problem. Next, we obtain the existence of two solutions, assuming only the classical Ambrosetti-Rabinowitz condition. Finally, we present a three solutions existence result under appropriate condition on the potential F.

EXISTENCE OF GROP INVARIANT SOULTIONS OF A SEMILINEAR ELLIPTIC EQUATION

  • Kajinkiya, Ryuji
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.763-777
    • /
    • 2000
  • We investigate the existence of group invariant solutions of the Emden-Fowler equation, - u=$\mid$x$\mid$$\sigma$$\mid$u$\mid$p-1u in B, u=0 on B and u(gx)=u(x) in B for g G. Here B is the unit ball in n 2, 1$\sigma$ 0 and G is a closed subgrop of the orthogonal group. A soultion of the problem is called a G in variant solution. We prove that there exists a G invariant non-radial solution if and only if G is not transitive on the unit sphere.

  • PDF

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

비국소 초기 조건을 갖는 비선형 퍼지 미분방정식에 대한 해의 존재성과 유일성 (The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition)

  • Kim, Mi-Ran;Park, Jong-Seo;Kim, Seon-Yu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.357-360
    • /
    • 2001
  • In this paper, we study the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations with nonlocal initial condition in E$\sub$N/$\^$2/ by using the concept of fuzzy number of dimension 2 whose values are normal convex upper semicontinuous and compactly supported surface in R$_2$.

  • PDF

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.