DOI QR코드

DOI QR Code

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari (Department of Mathematics, Dr.N.G.P. Arts and Science College) ;
  • K. Balachandran (Department of Mathematics, Bharathiar University) ;
  • N. Annapoorani (Department of Mathematics, Bharathiar University) ;
  • Daewook Kim (Department of Mathematics Education, Seowon University)
  • Received : 2022.06.19
  • Accepted : 2022.09.07
  • Published : 2023.06.15

Abstract

In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

Keywords

References

  1. R.P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differential equations, Compu. Math. Appl., 59 (2010), 1095-1100.  https://doi.org/10.1016/j.camwa.2009.05.010
  2. B. Boufoussi and S. Hajji, Successive approximation of neutral functional stochastic differential equations with jumps, Statistics Prob. Lett., 80 (2010), 324-332.  https://doi.org/10.1016/j.spl.2009.11.006
  3. A. Chadha and S.N. Bora, Stability analysis for neutral stochastic differential equation of second order driven by Poisson jumps, J. Math. Physics, 58 (2017), 112703. 
  4. Y. Chen, W.X. Zheng and A. Xue, A new result on stability analysis for stochastic neutral systems, Automatica, 46 (2010), 2100-2104.  https://doi.org/10.1016/j.automatica.2010.08.007
  5. S. Cong, On exponential stability conditions of linear neutral stochastic differential systems with time-varying delay, Inter.J. Robust and Nonlinear Control, 23 (2013), 1265-1276.  https://doi.org/10.1002/rnc.2818
  6. J. Cui and L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Physics A: Mathematical and Theoretical, 44 (2011), 335201. 
  7. V. Govindaraj, S. Priyadarshini, P. Sureshkumar and K. Balachandran, Asymptotic stability of fractional Langevin systems, J. Appl. Nonlinear Dyna., 11 (2022), 635-650.  https://doi.org/10.5890/JAND.2022.09.008
  8. L. Huang and X. Mao, Delay-dependent exponential stability of neutral stochastic delay systems, IEEE Trans. Autom. Control, 54 (2009), 147-152.  https://doi.org/10.1109/TAC.2008.2007178
  9. R. Joice Nirmala, K. Balachandran and J.J. Trujillo, Null controllability of fractional dynamical systems with constrained control, Fractional Calcu. Appl. Anal., 20 (2017), 153-167. 
  10. C. Kausika, K. Balachandran, N. Annapoorani and J.K. Kim, Existence and stability results of generalized fractional integrodifferential equations, Nonlinear Funct. Anal. Appl., 26 (2021), 793-809. 
  11. Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay, Stochastic Anal. Appl., 25 (2007), 397-415.  https://doi.org/10.1080/07362990601139610
  12. R. Mabel Lizzy, K. Balachandran and J.J. Trujillo, Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delay in control, Chaos, Solitons & Fractals, 102 (2017), 162-167.  https://doi.org/10.1016/j.chaos.2017.04.024
  13. X. Mao, Stochastic Differential Equation and Applications, Second Edition, Woodhead Publishing Limited, Cambridge, 2010. 
  14. X. Mao, Y. Shen and C. Yuan, Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching, Stochastic Proc. Their Appl., 118 (2008), 1385-1406.  https://doi.org/10.1016/j.spa.2007.09.005
  15. J.Y. Park, K. Balachandran and N. Annapoorani, Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Anal., 71 (2009), 3152-3162.  https://doi.org/10.1016/j.na.2009.01.192
  16. D. Qian, C. Li, R.P. Agarwal and P.J.Y. Wong, Stability analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput Model., 52 (2010), 862-874.  https://doi.org/10.1016/j.mcm.2010.05.016
  17. A.G. Radwan, A.M. Soliman, A.S. Elwakil and A. Sedeek, On the stability of linear systems with fractional order elements, Chaos, Solitons Fractals, 40 (2009), 2317-2328.  https://doi.org/10.1016/j.chaos.2007.10.033
  18. P. Ramesh, M. Sambath, M.H. Mohd and K. Balachandran, Stability analysis of the fractional order pre-predator model with infection, Inter. J. Model. Simul., 41 (2021) 434-450. 
  19. A. Rathinasamy, K. Balachandran and J.K. Kim, Existence and stability of solutions of neutral hybrid stochastic infinite delay differential equations with Poisson jumps, Nonlinear Funct. Anal. Appl., 16 (2011), 123-139. 
  20. Y. Ren and L. Chen, A note on the neutral stochastic functional differential equation with infinite delay and Poisson jumps in an abstract space, J. Math. Physics, 50 (2009), 082704. 
  21. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993. 
  22. P. Umamaheswari, K. Balachandran and N. Annapoorani, Existence and stability results for Caputo fractional stochastic differential equations with L'evy noise, Filomat, 34 (2020), 1739-1751. https://doi.org/10.2298/FIL2005739U