DOI QR코드

DOI QR Code

ω-INTERPOLATIVE CONTRACTIONS IN BIPOLAR METRIC SPACES

  • Jong Kyu Kim (Department of Mathematics Education, Kyungnam University) ;
  • Manoj Kumar (Department of Mathematics, Baba Mastnath University) ;
  • Pankaj (Department of Mathematics, Baba Mastnath University)
  • Received : 2022.07.23
  • Accepted : 2022.10.27
  • Published : 2023.06.15

Abstract

In this paper, we shall introduce the new notions of ω-orbital admissible mappings, ω-interpolative Kannan type contraction and ω-interpolative Ciric-Reich-Rus type contraction. In the setting of these new contractions, we will prove some fixed point theorems in bipolar metric spaces. Some existing results from literature are also deduced from our main results. Some examples are also provided to illustrate the theorems.

Keywords

References

  1. H. Aydi, E. Karapinar and Antonio Francisco Roldan Lopez de Hierro, ω- interpolative Ciric-Reich-Rus type contraction, Mathematics, 7(1) (2019):57.
  2. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3(1) (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  3. Y.U. Gaba, M. Aphane and H. Aydi, (α, BK)-Contractions in bipolar metric spaces, J. Math., (2021).
  4. E. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
  5. E. Karapinar, R.P. Agarwal and H. Aydi, Interpolative Riech-Rus-Ciric type contractions on partial metric spaces, Mathematics, 6 (2018):256.
  6. E. Karapinar, Revisiting the Kannan type contraction via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85-87.
  7. D. Kitkuan, A. Padcharoen, J.K. Kim and W.H. Lim, On α-Geraghty contractive mappings in bipolar metric spaces, Nonlinear Funct. Anal. Appl., 28(1) (2023), 295-309.
  8. P.P. Murthy, Z. Mitrovic, C.P. Dhuri and S. Radenovic, The common fixed point theorems in bipolar metric space, Gulf J. Math., 12(2) (2022), 31-38. https://doi.org/10.56947/gjom.v12i2.741
  9. A. Mutlu and U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9(9) (2016), 5362-5373. https://doi.org/10.22436/jnsa.009.09.05
  10. A. Mutlu, U. Gurdal and K. Ozkan, Fixed point results for α-ψ-contractive mappings in bipolar metric spaces, J. ineq. Special Funct., 11(1) (2020), 64-75.
  11. A. Mutlu, U. Gurdal and K. Ozkan,, Fixed point theorems for multivalued mappings on bipolar metric spaces, Fixed Point Theory, 21(1) (2020), 271-280. https://doi.org/10.24193/fpt-ro.2020.1.19
  12. O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014): 190.
  13. S. Reich, Fixed point of contractive functions, Boll. Un. Math. Ital., 4 (1972), 26-42.
  14. S. Riech, Kannan fixed point theorem, Boll. Un. Math. Ital., 4 (1971), 1-11.
  15. S. Riech, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
  16. I.A. Rus, Generalized contractions and applications, Cluj University Press: Clui Napoca Romania, 2001.
  17. I.A. Rus, Principles and applications of the fixed point theory, Editura Dacia: Clui Napoca Romania, 1979.